Innovita Research Foundation

I.R.F. / Survey / Chapter 8

Download printable version

Aging, The Molecular Concepts

Chapter 8 References

  1. Yu C. E., Oshima J., Fu Y. H., Wijsman E. M., Hisama F., Alisch R. et al. (1996) Positional cloning of the Werner's syndrome gene. Science 272: 258-262
  2. Epstein C. J. and Motulsky A. G. (1996) Werner syndrome: entering the helicase era. Bioessays 18: 1025-1027
  3. Ellis N. A. (1997) DNA helicases in inherited human disorders. Curr. Opin. Genet. Dev. 7: 354-363
  4. Martin G. M. (1978) Genetic syndromes in man with potential relevance to the pathobiology of aging. Birth Defects Orig. Artic. Ser. 14: 5-39
  5. Cleaver J. E. (1994) It was a very good year for DNA repair. Cell 76: 1-4
  6. Sugasawa K., Ng J. M., Masutani C., Iwai S., van der Spek P. J., Eker A. P. et al. (1998) Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair. Mol. Cell 2: 223-232
  7. Li L., Bales E. S., Peterson C. A. and Legerski R. J. (1993) Characterization of molecular defects in xeroderma pigmentosum group C. Nat. Genet. 5: 413-417
  8. Maeda T., Sato K., Minami H., Taguchi H. and Yoshikawa K. (1995) Chronological difference in walking impairment among Japanese group A xeroderma pigmentosum (XP-A) patients with various combinations of mutation sites. Clin. Genet. 48: 225-231
  9. Andrews A. D., Barrett S. F. and Robbins J. H. (1976) Relation of DNA repair processes to pathological ageing of the nervous system in xeroderma pigmentosum. Lancet (i): 1318-1320
  10. Mimaki T., Nitta M., Saijo M., Tachi N., Minami R. and Tanaka K. (1996) Truncated XPA protein detected in atypical group A xeroderma pigmentosum. Acta. Paediatr. 85: 511-513
  11. Kobayashi T., Kuraoka I., Saijo M., Nakatsu Y., Tanaka A., Someda Y. et al. (1997) Mutations in the XPD gene leading to xeroderma pigmentosum symptoms. Hum. Mutat. 9: 322-331
  12. Enokido Y., Inamura N., Araki T., Satoh T., Nakane H., Yoshino M. et al. (1997) Loss of the xeroderma pigmentosum group A gene (XPA) enhances apoptosis of cultured cerebellar neurons induced by UV but not by low-K_ medium. J. Neurochem. 69: 246-251
  13. Kohji T., Hayashi M., Shioda K., Minagawa M., Morimatsu Y., Tamagawa K. et al. (1998) Cerebellar neurodegeneration in human hereditary DNA repair disorders. Neurosci. Lett. 243: 133-136
  14. Reardon J. T., Bessho T., Kung H. C., Bolton P. H. and Sancar A. (1997) In vitro repair of oxidative DNA damage by human nucleotide excision repair system: possible explanation for neurodegeneration in xeroderma pigmentosum patients. Proc. Natl. Acad. Sci. USA 94: 9463-9468
  15. Wang X. W., Vermeulen W., Coursen J. D., Gibson M., Lupold S. E., Forrester K. et al. (1996) The XPB and XPD DNA helicases are components of the p53-mediated apoptosis pathway. Genes Dev. 10: 1219-1232
  16. Coin F., Bergmann E., Tremeau-Bravard A. and Egly J. M. (1999) Mutations in XPB and XPD helicases found in xeroderma pigmentosum patients impair the transcription function of TFIIH. EMBO J. 18: 1357-1366
  17. Henning K. A., Li L., Iyer N., McDaniel L. D., Reagan M. S., Legerski R. et al. (1995) The Cockayne syndrome group A gene encodes a WD repeat protein that interacts with CSB protein and a subunit of RNA polymerase II TFIIH. Cell 82: 555-564
  18. Troelstra C., van Gool A., de Wit J., Vermeulen W., Bootsma D. and Hoeijmakers J. H. (1992) ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne's syndrome and preferential repair of active genes. Cell 71: 939-953
  19. Selby C. P. and Sancar A. (1997) Human transcription-repair coupling factor CSB:ERCC6 is a DNA-stimulated ATPase but is not a helicase and does not disrupt the ternary transcription complex of stalled RNA polymerase II. J. Biol. Chem. 272: 1885-1890
  20. Iyer N., Reagan M. S., Wu K. J., Canagarajah B. and Friedberg E. C. (1996) Interactions involving the human RNA polymerase II transcription:nucleotide excision repair com J. Nakura et al. Helicases and aging 728 plex TFIIH, the nucleotide excision repair protein XPG, and Cockayne syndrome group B (CSB) protein. Biochemistry 35: 2157-2167
  21. van Oosterwijk M. F., Versteeg A., Filon R., van Zeeland A. A. and Mullenders L. H. (1996) The sensitivity of Cockayne's syndrome cells to DNA-damaging agents is not due to defective transcription-coupled repair of active genes. Mol. Cell. Biol. 16: 4436-4444
  22. Schaeffer L., Roy R., Humbert S., Moncollin V., Vermeulen W., Hoeijmakers J. H. et al. (1993) DNA repair helicase: a component of BTF2 (TFIIH) basic transcription factor. Science 260: 58-63
  23. Balajee A. S., May A., Dianov G. L., Friedberg E. C. and Bohr V. A. (1997) Reduced RNA polymerase II transcription in intact and permeabilized Cockayne syndrome group B cells. Proc. Natl. Acad. Sci.USA94: 4306-4311
  24. Bootsma D. and Hoeijmakers J. H. (1993) DNA repair: engagement with transcription. Nature 363: 114-115
  25. Vermeulen W., van Vuuren A. J., Chipoulet M., Schaeffer L., Appeldoorn E., Weeda G. et al. (1994) Three unusual repair deficiencies associated with transcription factor BTF2 (TFIIH): evidence for the existence of a transcription syndrome. Cold Spring Harb. Symp. Quant. Biol. 59: 317-329
  26. Friedberg E. C. (1996) Cockayne syndrome - a primary defect in DNA repair, transcription, both or neither? Bioessays 18: 731-738
  27. Weeda G., Rossignol M., Fraser R. A., Winkler G. S., Vermeulen W., van't Veer L. J. et al. (1997) TheXPBsubunit of repair:transcription factor TFIIH directly interacts with SUG1, a subunit of the 26S proteasome and putative transcription factor. Nucleic Acids Res. 25: 2274-2283
  28. Lee J. W., Ryan F., Swaffield J. C., Johnston S. A. and Moore D. D. (1995) Interaction of thyroid-hormone receptor with a conserved transcriptional mediator. Nature 374: 91-94
  29. Fraser R. A., Rossignol M., Heard D. J., Egly J. M. and Chambon P. (1997) SUG1, a putative transcriptional mediator and subunit of the PA700 proteasome regulatory complex, is a DNAhelicase. J. Biol. Chem. 272: 7122-7126
  30. Nouspikel T., Lalle P., Leadon S. A., Cooper P. K. and Clarkson S. G. (1997) A common mutational pattern in Cockayne syndrome patients from xeroderma pigmentosum group G: implications for a second XPG function. Proc. Natl. Acad. Sci.USA94: 3116-3121
  31. Cooper P. K., Nouspikel T., Clarkson S. G. and Leadon S. A. (1997) Defective transcription-coupled repair of oxidative base damage in Cockayne syndrome patients from XP group G. Science 275: 990-993
  32. Leadon S. A. and Cooper P. K. (1993) Preferential repair of ionizing radiation-induced damage in the transcribed strand of an active human gene is defective in Cockayne syndrome. Proc. Natl. Acad. Sci.USA90: 10499-10503
  33. Mellon I., Rajpal D. K., Koi M., Boland C. R. and Champe G. N. (1996) Transcription-coupled repair deficiency and mutations in human mismatch repair genes. Science 272: 557-560
  34. Wang X. W., Vermeulen W., Coursen J. D., Gibson M., Lupold S. E., Forrester K. et al. (1996) The XPB and XPD DNA helicases are components of the p53-mediated apoptosis pathway. Genes Dev. 10: 1219-1232
  35. van der Horst G. T., van Steeg H., Berg R. J., van Gool A. J., de Wit J., Weeda G. et al. (1997) Defective transcription-coupled repair in Cockayne syndrome B mice is associated with skin cancer predisposition. Cell 89: 425-435
  36. Stefanini M., Lagomarsini P., Giorgi R. and Nuzzo F. (1987) Complementation studies in cells from patients affected by trichothiodystrophy with normal or enhanced UV photosensitivity. Mutat. Res. 191: 117-119
  37. Lehmann A. R., Arlett C. F., Broughton B. C., Harcourt S. A., Steingrimsdottir H., Stefanini M. et al. (1988) Trichothiodystrophy, a human DNA repair disorder with heterogeneity in the cellular response to ultraviolet light. Cancer Res. 48: 6090-6096
  38. Stefanini M., Giliani S., Nardo T., Marinoni S., Nazzaro V., Rizzo R. et al. (1992)DNArepair investigations in nine Italian patients affected by trichothiodystrophy. Mutat. Res. 273: 119-125
  39. Stefanini M., Vermeulen W., Weeda G., Giliani S., Nardo T., Mezzina M. et al. (1993)Anew nucleotide-excision-repair gene associated with the disorder trichothiodystrophy. Am. J. Hum. Genet. 53: 817-821
  40. Weeda G., Eveno E., Donker I., Vermeulen W., Chevallier-Lagente O., Taieb A. et al. (1997)Amutation in the XPB:ERCC3 DNA repair transcription gene, associated with trichothiodystrophy. Am. J. Hum. Genet. 60: 320-329
  41. de Boer J., de Wit J., van Steeg H., Berg R. J., Morreau H., Visser P. et al. (1998) A mouse model for the basal transcription: DNA repair syndrome trichothiodystrophy. Mol. Cell 1: 981-990
  42. Taylor E. M., Broughton B. C., Botta E., Stefanini M., Sarasin A., Jaspers N. G. et al. (1997) Xeroderma pigmentosum and trichothiodystrophy are associated with different mutations in the XPD (ERCC2) repair:transcription gene. Proc. Natl. Acad. Sci.USA94: 8658-8663
  43. Botta E., Nardo T., Broughton B. C., Marinoni S., Lehmann A. R. and Stefanini M. (1998) Analysis of mutations in the XPD gene in Italian patients with trichothiodystrophy: site of mutation correlates with repair deficiency, but gene dosage appears to determine clinical severity. Am. J. Hum. Genet. 63: 1036-1048
  44. Broughton B. C., Steingrimsdottir H., Weber C. A. and Lehmann A. R. (1994) Mutations in the xeroderma pigmentosum group D DNA repair:transcription gene in patients with trichothiodystrophy. Nat. Genet. 7: 189-194
  45. Takayama K., Danks D. M., Salazar E. P., Cleaver J. E. and Weber C. A. (1997) DNA repair characteristics and mutations in the ERCC2 DNA repair and transcription gene in a trichothiodystrophy patient. Hum. Mutat. 9: 519-525
  46. Coin F., Marinoni J. C., Rodolfo C., Fribourg S., Pedrini A. M. and Egly J. M. (1998) Mutations in the XPD helicase gene result in XP and TTD phenotypes, preventing interaction between XPD and the p44 subunit of TFIIH. Nat. Genet. 20: 184-188
  47. Runger T. M. and Kraemer K. H. (1989) Joining of linear plasmidDNAis reduced and error-prone in Bloom's syndrome cells.EMBOJ. 8: 1419-1425
  48. Foucault F., Vaury C., Barakat A., Thibout D., Planchon P., Jaulin C. et al. (1997) Characterization of a newBLMmutation associated with a topoisomerase II alpha defect in a patient with Bloom's syndrome. Hum. Mol. Genet. 6: 1427-1434
  49. Sirover M. A., Vollberg T. M. and Seal G. (1990) DNA repair and the molecular mechanisms of Bloom's syndrome. Crit. Rev. Oncog. 2: 19-33
  50. Ellis N. A., Groden J., Ye T. Z., Straughen J., Lennon D. J., Ciocci S. et al. (1995) The Bloom's syndrome gene product is homologous to RecQ helicases. Cell 83: 655-666
  51. Karow J. K., Chakraverty R. K. and Hickson I. D. (1997) The Bloom's syndrome gene product is a 3%-5% DNA helicase. J. Biol. Chem. 272: 30611-30614
  52. Kaneko H., Orii K. O., Matsui E., Shimozawa N., Fukao T., Matsumoto T. et al. (1997) BLM (the causative gene of Bloom syndrome) protein translocation into the nucleus by a nuclear localization signal. Biochem. Biophys. Res. Commun. 240: 348-353
  53. Bahr A., De Graeve F., Kedinger C. and Chatton B. (1998) Point mutations causing Bloom's syndrome abolish ATPase andDNAhelicase activities of the BLM protein. Oncogene 17: 2565-2571
  54. Yamagata K., Kato J., Shimamoto A., Goto M., Furuichi Y. and Ikeda H. (1998) Bloom's and Werner's syndrome genes suppress hyperrecombination in yeast sgs1 mutant: implication for genomic instability in human diseases. Proc. Natl. Acad. Sci.USA95: 8733-8738
  55. Sinclair D. A., Mills K. and Guarente L. (1997) Accelerated aging and nucleolar fragmentation in yeast sgs1 mutants. Science 277: 1313-1316
  56. Watt P. M., Louis E. J., Borts R. H. and Hickson I. D. (1995) Sgs1: a eukaryotic homolog of E. coli RecQ that interacts with CMLS, Cell. Mol. Life Sci. Vol. 57, 2000 topoisomerase II in vivo and is required for faithful chromosome segregation. Cell 81: 253-260
  57. Gangloff S., McDonald J. P., Bendixen C., Arthur L. and Rothstein R. (1994) The yeast type I topoisomerase Top3 interacts with Sgs1, a DNA helicase homolog: a potential eukaryotic reverse gyrase. Mol. Cell. Biol. 14: 8391-8398
  58. Stewart E., Chapman C. R., Al-Khodairy F., Carr A. M. and Enoch T. (1997) rqh1_, a fission yeast gene related to the Bloom's and Werner's syndrome genes, is required for reversible S phase arrest. EMBO J. 16: 2682-2692
  59. Davey S., Han C. S., Ramer S. A., Klassen J. C., Jacobson A., Eisenberger A. et al. (1998) Fission yeast rad12_ regulates cell cycle checkpoint control and is homologous to the Bloom's syndrome disease gene. Mol. Cell. Biol. 18: 2721-2728
  60. Hanada K., Ukita T., Kohno Y., Saito K., Kato J. and Ikeda H. (1997) RecQ DNA helicase is a suppressor of illegitimate recombination in Escherichia coli. Proc. Natl. Acad. Sci. USA 94: 3860-3865
  61. West S. C. (1994) The processing of recombination intermediates: mechanistic insights from studies of bacterial proteins. Cell 76: 9-15
  62. Umezu K. and Nakayama H. (1993) RecQ DNA helicase of Escherichia coli: characterization of the helix-unwinding activity with emphasis on the effect of single-stranded DNA-binding protein. J. Mol. Biol. 230: 1145-1150
  63. Chester N., Kuo F., Kozak C., O'Hara C. D. and Leder P. (1998) Stage-specific apoptosis, developmental delay, and embryonic lethality in mice homozygous for a targeted disruption in the murine Bloom's syndrome gene. Genes Dev. 12: 3382-3393
  64. Warren S. T., Schultz R. A., Chang C. C., Wade M. H. and Trosko J. E. (1981) Elevated spontaneous mutation rate in Bloom syndrome fibroblasts. Proc. Natl. Acad. Sci. USA 78: 3133-3137
  65. Epstein C. J., Martin G. M., Schultz A. L. and Motulsky A. G. (1966) Werner's syndrome: a review of its symptomatology, natural history, pathologic features, genetics and relationship to the natural aging process. Medicine 45: 177-221
  66. Martin G. M., Sprague C. A. and Epstein C. J. (1970) Replicative life-span of cultivated human cells: effects of donor's age, tissue, and genotype. Lab. Invest. 23: 86-92
  67. Salk D., Bryan E., Au K., Hoehn H. and Martin G. M. (1981) Systematic growth studies, cocultivation, and cell hybridization studies of Werner syndrome cultured skin fibroblasts. Hum. Genet. 58: 310-316
  68. Takeuchi F., Hanaoka F., Goto M. and Yamada M. (1982) Prolongation of S phase and whole cell cycle in Werner's syndrome fibroblasts. Exp. Gerontol. 17: 473-480
  69. Takeuchi F., Hanaoka F., Goto M., Akaoka I., Hori T., Yamada M. et al. (1982) Altered frequency of initiation sites of DNA replication in Werner's syndrome cells. Hum. Genet. 60: 365-368
  70. Hanaoka F., Takeuchi F., Matsumura T., Goto M., Miyamoto T. and Yamada M. (1983) Decrease in the average size of replicons in a Werner syndrome cell line by simian virus 40 infection. Exp. Cell Res. 144: 463-467
  71. Salk D. (1982) Werner's syndrome: a review of recent research with an analysis of connective tissue metabolism, growth control of cultured cells, and chromosomal aberrations. Hum. Genet. 62: 1-5
  72. Fujiwara Y., Higashikawa T. and Tatsumi M. (1977) A retarded rate of DNA replication and normal level of DNA repair in Werner's syndrome fibroblasts in culture. J. Cell. Physiol. 92: 365-374
  73. Higashikawa T. and Fujiwara Y. (1978) Normal level of unscheduled DNA synthesis in Werner's syndrome fibroblasts in culture. Exp. Cell Res. 113: 438-442
  74. Kruk P. A., Rampino N. J. and Bohr V. A. (1995) DNA damage and repair in telomeres: relation to aging. Proc. Natl. Acad. Sci. USA 92: 258-262
  75. Webb D. K., Evans M. K. and Bohr V. A. (1996) DNA repair fine structure in Werner's syndrome cell lines. Exp. Cell Res. 224: 272-278
  76. Bennett S. E.,UmarA., Oshima J., Monnat R. J. Jr and Kunkel T. A. (1997) Mismatch repair in extracts of Werner syndrome cell lines. Cancer Res. 57: 2956-2960
  77. Fukuchi K., Tanaka K., Nakura J., Kumahara Y., Uchida T. and Okada Y. (1985) Elevated spontaneous mutation rate in SV40-transformed Werner syndrome fibroblast cell lines. Somat. Cell Mol. Genet. 11: 303-308
  78. Fukuchi K., Martin G. M. and Monnat R. J. Jr (1989) Mutator phenotype of Werner syndrome is characterized by extensive deletions. Proc. Natl. Acad. Sci. USA 86: 5893-5897
  79. Fukuchi K., Tanaka K., Kumahara Y., Marumo K., Pride M. B., Martin G. M. et al. (1990) Increased frequency of 6-thioguanine-resistant peripheral blood lymphocytes in Werner syndrome patients. Hum. Genet. 84: 249-252
  80. Murano S., Thweatt R., Shmookler Reis R. J., Jones R. A., Moerman E. J. and Goldstein S. (1991) Diverse gene sequences are overexpressed in Werner syndrome fibroblasts undergoing premature replicative senescence. Mol. Cell. Biol. 11: 3905-3914
  81. Lecka-Czernik B., Moerman E. J., Jones R. A. and Goldstein S. (1996) Identification of gene sequences overexpressed in senescent and Werner syndrome human fibroblasts. Exp. Gerontol. 31: 159-174
  82. Bauer E. A., Silverman N., Busiek D. F., Kronberger A. and Deuel T. F. (1986) Diminished response of Werner's syndrome fibroblasts to growth factors PDGF and FGF. Science 234: 1240-1243
  83. Gray M. D., Shen J. C., Kamath-Loeb A. S., Blank A., Sopher B. L., Martin G. M. et al. (1997) The Werner syndrome protein is a DNA helicase. Nat. Genet. 17: 100-103
  84. Matsumoto T., Shimamoto A., Goto M. and Furuichi Y. (1997) Impaired nuclear localization of defective DNA helicases in Werner's syndrome. Nat. Genet. 16: 335-336
  85. Sinclair D. A. and Guarente L. (1997) Extrachromosomal rDNA circles - a cause of aging in yeast. Cell 91: 1033-1042
  86. Gray M. D., Wang L., Youssoufian H., Martin G. M. and Oshima J. (1998) Werner helicase is localized to transcriptionally active nucleoli of cycling cells. Exp. Cell Res. 242: 487-494
  87. Huang S., Li B., Gray M. D., Oshima J., Mian I. S. and Campisi J. (1998) The premature ageing syndrome protein, WRN, is a 3%i5% exonuclease. Nat. Genet. 20: 114-116
  88. Mushegian A. R., Bassett D. E. Jr, Boguski M. S., Bork P. and Koonin E. V. (1997) Positionally cloned human disease genes: patterns of evolutionary conservation and functional motifs. Proc. Natl. Acad. Sci. USA 94: 5831-5836
  89. Mian I. S. (1997) Comparative sequence analysis of ribonucleases HII, III, II PH and D. Nucleic Acids Res. 25: 3187-3195
  90. Lebel M. and Leder P. (1998) A deletion within the murine Werner syndrome helicase induces sensitivity to inhibitors of topoisomerase and loss of cellular proliferative capacity. Proc. Natl. Acad. Sci. USA 95: 13097-13102
  91. Okada M., Goto M., Furuichi Y. and Sugimoto M. (1998) Differential effects of cytotoxic drugs on mortal and immortalized B-lymphoblastoid cell lines from normal and Werner's syndrome patients. Biol. Pharm. Bull. 21: 235-239
  92. Yan H., Chen C. Y., Kobayashi R. and Newport J. (1998) Replication focus-forming activity 1 and the Werner syndrome gene product. Nat. Genet. 19: 375-378
  93. Tanaka K., Nakazawa T., Okada Y. and Kumahara Y. (1980) Roles of nuclear and cytoplasmic environments in the retarded DNA synthesis in Werner syndrome cells. Exp. Cell Res. 127: 185-190
  94. Kodama S., Kashino G., Suzuki K., Takatsuji T., Okumura Y., Oshimura M. et al. (1998) Failure to complement abnormal phenotypes of simian virus 40-transformed Werner syndrome cells by introduction of a normal human chromosome 8. Cancer Res. 58: 5188-5195
  95. Gibbons R. J., Picketts D. J., Villard L. and Higgs D. R. (1995) Mutations in a putative global transcriptional regulator cause X-linked mental retardation with alpha-thalassemia (ATR-X syndrome). Cell 80: 837-845
  96. Cote J., Quinn J., Workman J. L and Peterson C. L. (1994) Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI:SNF complex. Science 265: 53-60 J. Nakura et al. Helicases and aging 730
  97. Picketts D. J., Higgs D. R., Bachoo S., Blake D. J., Quarrell O. W. and Gibbons R. J. (1996) ATRX encodes a novel member of the SNF2 family of proteins: mutations point to a common mechanism underlying the ATR-X syndrome. Hum. Mol. Genet. 5: 1899-1907
  98. Cardoso C., Timsit S., Villard L., Khrestchatisky M., Fontes M. and Colleaux L. (1998) Specific interaction between the XNP:ATR-X gene product and the SET domain of the human EZH2 protein. Hum. Mol. Genet. 7: 679-684
  99. Craddock C. F., Vyas P., Sharpe J. A., Ayyub H., Wood W. G. and Higgs D. R. (1995) Contrasting effects of alpha and beta globin regulatory elements on chromatin structure may be related to their different chromosomal environments. EMBO J. 14: 1718-1726
  100. Gibbons R. J and Higgs D. R. (1996) The alpha-thalassemia: mental retardation syndromes. Medicine 75: 45-52
  101. Calin G., Herlea V., Barbanti-Brodano G. and Negrini M. (1998) The coding region of the Bloom syndrome BLM gene and of the CBL proto-oncogene is mutated in genetically unstable sporadic gastrointestinal tumors. Cancer Res. 58: 3777-3781
  102. Ye L., Miki T., Nakura J., Oshima J., Kamino K., Rakugi H. et al. (1997) Association of a polymorphic variant of the Werner helicase gene with myocardial infarction in a Japanese population. Am. J. Med. Genet. 68: 494-498
  103. Yamabe Y., Sugimoto M., Satoh M., Suzuki N., Sugawara M., Goto M. et al. (1997) Down-regulation of the defective transcripts of the Werner's syndrome gene in the cells of patients. Biochem. Biophys. Res. Commun. 236: 151-154
  104. Campisi J. (1996) Replicative senescence: an old lives' tale? Cell 84: 497-500
  105. Wang E. (1995) Senescent human fibroblasts resist programmed cell death, and failure to suppress bcl2 is involved. Cancer Res. 55: 2284-2292
  106. Matuoka K. and Takenawa T. (1998) Downregulated expression of the signaling molecules Nck, c-Crk, Grb2:Ash, PI 3-kinase p110 alpha and WRN during fibroblast aging in vitro. Biochim. Biophys. Acta 1401: 211-215
  107. Wang L., Hunt K. E., Martin G. M. and Oshima J. (1998) Structure and function of the human Werner syndrome gene promoter: evidence for transcriptional modulation. Nucleic Acids Res. 26: 3480-3485
  108. Wu J., He J. and Mountz J. D. (1998) Effect of age and apoptosis on the mouse homologue of the huWRN gene. Mech. Ageing Dev. 103: 27-44
  109. Aggarwal S. and Gupta S. (1998) Increased apoptosis of T cell subsets in aging humans: altered expression of Fas (CD95), Fas ligand, Bcl-2, and Bax. J. Immunol. 160: 1627-1637
  110. Tamura A. and Yui K. (1995) Age-dependent reduction of Bcl-2 expression in peripheral T cells of lpr and gld mutant mice. J. Immunol. 155: 499-507
  111. Laurent B. C., Treich I. and Carlson M. (1993) The yeast SNF2:SWI2 protein has DNA-stimulated ATPase activity required for transcriptional activation. Genes Dev. 7: 583-591
  112. Wang X. W., Yeh H., Schaeffer L., Roy R., Moncollin V., Egly J. M. et al. (1995) p53 modulation of TFIIH-associated nucleotide excision repair activity. Nat. Genet. 10: 188-195
  113. Bodnar A. G., Ouellette M., Frolkis M., Holt S. E., Chiu C. P., Morin G. B. et al. (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279: 349-352
  114. Schulz V. P., Zakian V. A., Ogburn C. E., McKay J., Jarzebowicz A. A., Edland S. D. et al. (1996) Accelerated loss of telomeric repeats may not explain accelerated replicative decline of Werner syndrome cells. Hum. Genet. 97: 750-754.
  115. Evans DA, Funkenstein HH, Albert MS, Scherr PA, Cook NR, Chown MJ, Hebert LE, Hennekens CH, Taylor JO (1989) Prevalence of Alzheimer's disease in a community population of older persons. Higher than previously reported. J Am Med Assoc 262:2551-2556
  116. Ernst RL, Hay JW (1994) The US economic and social costs of Alzheimer's disease revisited. Am J Public Health 84:1261-1264
  117. Hebert LE, Scherr PA, Beckett LA, Albert MS, Pilgrim DM, Chown MJ, Funkenstein HH, Evans DA (1995) Age-specific incidence of Alzheimer's disease in a community population. J Am Med Assoc 273:1354-1359
  118. Yankner BA (2000) A century of cognitive decline. Nature 404:125
  119. Wisniewski HM, Wegiel J (1994) Beta-protein fibrillogenesis and neuritic plaques. In: Calne DB (ed) Neurodegenerative diseases. WB Saunders, Philadelphia, pp 83-95
  120. McLean CA, Cherny RA, Fraser FW, Fuller SJ, Smith MJ, Beyreuther K, Bush AI, Masters CL (1999) Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease. Ann Neurol 46:860-866
  121. Simons M, DeStrooper B, Muthaup G, Tienari PJ, Dotti CG, Beyreuther K (1996) Amyloidogenic processing of the human amyloid precursor in primary cultures of rat hippocampal neurons. J Neurosci 16:899-908
  122. Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, Teplow DB, Ross S, Amarante P, Loeloff R, Luo Y, Fisher S, Fuller J, Edenson S, Lile J, Jarosinski MA, Biere AL, Curran E, Burgess T, Louis JC, Collins F, Treanor J, Rogers G, Citron M (1999) Beta-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286:735-741
  123. Haass C, Koo E, Mellon A, Hung AY, Selkoe DJ (1992) Targeting of cell-surface β-amyloid precursor protein to lysosomes: alternative processing into amyloid-bearing fragments. Nature 357:500-503
  124. Cook DG, Forman MS, Sung JC, Leight S, Kolson DL, Iwatsubo T, Lee VM, Doms RW (1997) Alzheimer's A beta (1-42) is generated in the endoplasmic reticulum/intermediate compartment of NT2 N cells. Nat Med 3:1021-1023
  125. Hartmann T, Bieger S, Bruhl B, Tienari PJ, Ida N, Allsop D, Roberts GW, Masters CL, Dotti CG, Unsicker K, Beyreuther K (1997) Distinct sites of intracellular production for
  126. Weidemann A, Paliga K, Durrwang U, Czech C, Evin G, Masters C, Beyreuther K (1997) Formation of stable complexes between two Alzheimer's disease gene products: presenilin-2 and β-amyloid precursor protein. Nat Med 3:328-332
  127. Yan SD, Fu J, Soto C, Chen X, Zhu H, Al-Mohanna F, Collison K, Zhu A, Stern E, Saido T, Tohyama M, Ogawa S, Roher A, Stern D (1997) An intracellular protein that binds amyloid-β peptide and mediates neurotoxicity in Alzheimer's disease. Nature 389:689-695
  128. Lenden CL, Ashall F, Goate AM (1997) Exploring the etiology of Alzheimer disease using molecular genetics. J Am Med Assoc 277:825-831
  129. Citron M, Oltersdorf T, Haass C, McConlogue L, Hung AY, Seubert P, Vigo-Pelfrey C, Lieberburg I, Selkoe DJ (1992) Mutation of the β-amyloid precursor protein in familial Alzheimer's disease increases beta-protein production. Nature 360:672-674
  130. Schellenberg GD, Bird TD, Wijsman EM, et al (1992) Genetic linkage evidence for a familial Alzheimer's disease locus on chromosome 14. Science 258:668-671
  131. Schellenberg GD, Payami H, Wijsman EM, et al (1993) Chromosome 14 and late-onset familial Alzheimer's disease (FAD). Hum Genet 53:619-628
  132. Levy-Lahad E, Wijsman EM, Nemes E, Anderson L, Goddard KAB, Weber JL, Bird TD, Schellenberg GD (1995) A familial Alzheimer's disease locus on chromosome 1. Science 69: 970-973
  133. Haass C (1996) The presenilin genes and early dementia. Curr Opin Neurol 9:254-259
  134. Scheuner D, Eckman C, Jensen M, Song X, Citron M, Suzuki N, Bird TD, Hardy J, Hutton M, Kukull W, Larson E, Levy-Lahad E, Viitanen M, Peskind E, Poorkaj P, Schellenberg G, Tanzi R, Wasco W, Lannfelt L, Selkoe D, Younkin S (1996)
  135. Citron M, Westaway D, Xia W, Carlson G, Diehl T, Levesque G, Johnson-Wood K, Lee M, Seubert P, Davis A, Kholodenko D, Motter R, Sherrington R, Perry B, Yao H, Strome R, Lieberburg I, Rommens J, Kim S, Schenk D, Fraser P, St George Hyslop P, Selkoe DJ (1997) Mutant presenilins of Alzheimer's disease increase production of 42-residue amyloid β-protein in both transfected cells and transgenic mice. Nat Med 3:67-72
  136. Lemere C, Lopera F, Kosik K, Lendon CL, Ossa J, Saido TC, Yamaguchi H, Ruiz A, Martinez A, Madrigal L, Hincapie L, Arango JC, Anthony DC, Koo EH, Goate AM, Selkoe DJ, Arango JC (1996) The E280 A presenilin 1 Alzheimer mutation produces increased Aβ42 deposition and severe cerebellar pathology. Nat Med 2:1146-1114
  137. DeStrooper B, Saftig P, Craessaerts K, Vanderstichele H, Guhde G, Annaert W, Figura K von, Leuven F van (1998) Deficiency of presenilin-1 inhibits the normal cleavage of the transmembrane domain of amyloid precursor protein. Nature 391:387-390
  138. Poirier J (1994) Apolipoprotein E in animals of CNS injury and in Alzheimer's disease. Trends Neurosci 17:525-530
  139. Saunders AM, Schmader K, Breitner JCS, et al (1993) Apolipoprotein E4 allele distribution in late-onset Alzheimer's disease and in other amyloid-forming diseases. Lancet 342:710-711
  140. Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD, Haines JL, Pericak-Vance MA (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science 261:921-923
  141. Corder EH, Saunders AM, Risch NJ, Strittmatter WJ, Schmechel DE, Gaskell PC Jr, Rimmler JB, Locke PA, Conneally PM, Schmader KE (1994) Protective effects apolipoprotein E type 2 allele for late onset Alzheimer disease. Nat Genet 7:180-184
  142. Teter B, Xu PT, Gilbert JR, Roses AD, Galasko D, Cole GM (1999) Human apolipoprotein E isoform-specific differences in neuronal sprouting in organotypic hippocampal culture. J Neurochem 73:2613-2616
  143. Blacker D, Wilcox MA, Laird NM, Rodes L, Horvath SM, Go RC, Perry R, Watson B Jr, Bassett SS, McInnis MG, Albert MS, Hyman BT, Tanzi RE (1998) Alpha-2 macroglobulin is genetically associated with Alzheimer's disease. Nat Genet 19:357-360
  144. Ulery PG, Beers J, Mikhailenko I, Tanzi RE, Rebeck GW, Hyman BT, Strickland DK (2000) Modulation of beta-amyloid precursor protein processing by the low density lipoprotein receptorrelated protein (LRP): evidence that LRP contributes to the pathogenesis of Alzheimer's disease. J Biol Chem 275: 7410-7410
  145. Yankner BA, Duffy LK, Kirschner DA (1990) Neurotrophic and neurotoxic effects of amyloid beta protein: reversal by tachykinin neuropeptides. Science 250:279-282
  146. Simmons LK, May PC, Tomaselli KJ, Rydel RE, Fuson KS, Brigham EF, Wright S, Lieberburg I, Becker GW, Brems DN, Li WY (1994) Secondary structure of amyloid β peptide correlates with neurotoxic activity in vitro. Mol Pharmacol 45:373-379
  147. Lambert M, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I, Trommer B, Viola KL, Wals P, Zhang C, Finch CE, Krafft GA, Klein WL (1998) Diffusible, non-fibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci USA 95:6448-6453
  148. Ward RV, Jennings KH, Japras R, Neville W, Owen DE, Hawkins J, Christie G, Davis JB, George A, Karran EH, Howlett DR (2000) Franctionation and characterization of oligomeric protofibrillar and fibrillar forms of beta-amyloid peptide. Biochem J 348:137-144
  149. Meda L, Cassatella MA, Szendrei GI, Otvos L Jr, Baron P, Villalba M, Ferrari D, Rossi F (1995) Activation of microglial cells by beta-amyloid protein and interferon-gamma. Nature 374:647-650
  150. Ishii K, Muelhauser F, Liebl U, Picard M, Kuhl S, Penke B, Bayer T, Hennerici M, Wiessler M, Beyreuther K, Hartmann T, Fassbender K (2000) Subacute NO generation induced by Alzheimer's β-amyloid in the living brain: reversal by inhibition of the inducible NO synthase. FASEB J 14: 1485-1489
  151. Wisniewski T, Golabek A, Matsubara E, Ghisho J, Frangione B (1993) Apolipoprotein E: binding to soluble Alzheimer's beta-amyloid. Biochem Biophys Res Commun 192:359-365
  152. Ma J, Yee A, Brewer B, Das S, Potter H (1994) Amyloid-associated proteins a1-antichymotrypsin and apolipoprotein E promote assembly of Alzheimer β-protein into filaments. Nature 372: 92-94
  153. Snow AD, Mar H, Nochlin D, Kimata K, Kato M, Suzuki S, Hassell J, Wight TN (1988) The presence of heparan sulfate proteoglycans in the neuritic plaques and congophilic angiopathy in Alzheimer's Disease. Am J Pathol 133:456-463
  154. Snow AD, Mar H, Nochlin D, Dresse H, Wight TN (1992) Peripheral distribution of dermatan sulfate proteoglycans (decorin) in amyloid-containing plaques and their presence in neurofibrillary tangles of Alzheimer's disease. J Histochem Cytochem 40:105-113
  155. Snow AD, Nochlin D, Sekiguchi R, Carlson SS (1996) Identification in immunolocalization of a new class of proteoglycan (keratin sulfate) to the neuritic plaques of Alzheimer's disease. Exp Neurol 138:305-317
  156. DeWitt DA, Silver J, Canning DR, Perry G (1993) Chondroitin sulfate proteoglycans are associated with the lesions of Alzheimer's disease. Exp Neurol 121:149-152
  157. Fraser PE, Nguyen JT, Chin DT, Kirschner DA (1992) Effects of sulfate ions on Alzheimer β/A4 peptide assemblies: implications for amyloid fibril-proteoglycan interactions. J Neurochem 59: 1531-1540
  158. Snow AD, Kinsella MG, Parks E, Sekiguchi RT, Miller JD, Kimata K, Wight TN (1995) Differential binding of vascular cell-derived proteoglycans (perlecan, biglycan, decorin and versican) to the β-amyloid protein of Alzheimer's disease. Arch Biochem Biophys 320:84-95
  159. Castillo GM, Ngo C, Cummings J, Wight TN, Snow AD (1997) Perlecan binds to the β-amyloid proteins (Aβ) of Alzheimer's Disease, accelerates Aβ fibril formation and maintains Aβ fibril stability. J Neurochem 69:2452-2465
  160. Gupta-Bansal R, Frederickson RC, Brunden KR (1998) Proteoglycan-mediated inhibition of A beta proteolysis: a potential cause of senile plaque accumulation. J Biol Chem. 270: 18666-18671
  161. Geula C, Wu CK, Saroff D, Lorenzo A, Yuan M, Yankner BA (1998) Aging renders the brain vulnerable to amyloid betaprotein neurotoxicity. Nat Med 4:827-831 Giacobini E, Michel JP (1998) Cholinesterase inhibitors for Alzheimer disease therapy: past, present and future. Int J Ger Psychopharmacol 1:164-170 Glabe C (2000) Does Alzheimer disease tilt the scales of amyloid degradation versus accumulation? Nat Med 6:133-134
  162. Games D, Adams D, Alessandrini R, Barbour R, Berthelette P, Blackwell C, Carr T, Clemens J, Donaldson T, Gillespie F (1995) Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. Nature 373:523-527
  163. Griffin WS, Stanley LC, Ling C, White L, MacLeod V, Perrot LJ, White CL III, Araoz C (1995) Brain interleukin-1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer Disease. Proc Natl Acad Sci USA 86:7611-7615
  164. London JA, Biegel D, Pachter JS (1996) Neurocytopathic effects of beta-amyloid stimulated monocytes: a potential mechanism for central nervous system damage in Alzheimer disease. Proc Natl Acad Sci USA 93:4147-4152
  165. Markesbery WR, Carney JM (1999) Oxidative alterations in Alzheimer's disease. Brain Pathol 9:133-146
  166. Blasko I, Marx F, Steiner E, Hartmann T, Grubeck-Loebenstein B (1999) TNF alpha plus IFN gamma induce the production of Alzheimer-amyloid peptides and decrease the secretion of APPs. FASEB J 12:63-68
  167. Lieb K, Fiebich BL, Schaller H, Berger M, Bauer J (1996) Interleukin-1 beta and tumor necrosis factor-alpha induce expression of alpha-1-antichymotrypsin in human astrocytoma cells by activation of nuclear factor-kappa B. J Neurochem 67:2039-2044
  168. Masters CL, Beyreuther K (1998) Alzheimer's disease. Br Med J 316:446-448
  169. Jensen M, Schroder J, Blomberg M, Engvall B, Pantel J, Ida N, Basun H, Wahlund LO, Werle E, Jauss M, Beyreuther K, Lannfelt L, Hartmann T (1999) Cerebrospinal fluid Aβ42 is increased early in sporadic Alzheimer's disease and declines with disease progression. Ann Neurol 45:504-511
< Previous | Contents