Innovita Research Foundation

I.R.F. / Survey / Chapter 5

Download printable version

Aging, The Molecular Concepts

Chapter 5 References

  1. Wiseman H, Halliwell B. Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J 1996: 313: 17-29.
  2. Bohr VA, Anson RM. DNA damage, mutation and fine structure DNA repair in aging. Mutat Res 1995: 338: 25-34.
  3. Bohr VA. DNA repair fine structure and its relations to genomic instability. Carcinogenesis 1995: 16: 2885-92.
  4. Friedberg EC. Relationships between DNA repair and transcription. Annu Rev Biochem 1996: 65: 15-42.
  5. Henie ES, Linn S. Formation, prevention and repair of DNA damage by iron/hydrogen peroxide. J Biol Chem 1997: 272: 19095-8.
  6. Imlay JA, Chin SM, Linn S. Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science 1988: 240: 640-2.
  7. Imlay JA, Linn S. DNA damage and oxygen radical toxicity. Science 1988: 240: 1302-9.
  8. Yamazaki I, Piette LH. EPR spin-trapping on the oxidizing species formed in the reaction of the ferrous ion with hydrogen peroxide. J Am Chem Soc 1991: 113: 7588-93.
  9. Goldstein S, Meyerstein D, Czapski G. The Fenton reagents. Free Rad Biol Med 1993: 15: 435-45.
  10. Wink DA, Nims RW, Saavedra JE, Utermahlen WE Jr, Ford PC. The Fenton oxidation mechanism: Reactivities of biologically relevant substrates with two oxidizing intermediates differ from those predicted for the hydroxyl radical. Proc Nati Acad Sci USA 1994: 91: 6604-8.
  11. Luo Y, Han ZX, Chin M, Linn S. Three chemically distinct types of oxidants formed by ironmediated fenton reactions in the presence of DNA. Proc Nati Acad Sci USA 1994: 91: 12438-42.
  12. Chevion M. A site-specific mechanism for free radical induced biological damage: The essential role of redox-active transition metals. Free Rad Biol Med 1988: 5: 27-37.
  13. Clayson DB, Mehta R, Iverson F. Oxidative DNA damage - The effects of certain genotixic and operationally non-genotoxic carcinogens. Mutat Res 1994: 317: 25-42.
  14. Meneghini R. Iron homeostasis, oxidative stress, and DNA damage. Free Rad Biol Med 1997: 23: 783-92.
  15. Enright HU, Miller WJ, Hebbel RP. Nucleosomal histone protein protects DNA from iron-mediated damage. Nucl Acids Res 1992: 20: 3341-6.
  16. Martinez-Balbas MA, Jimenez-Garcia E, Azorin F. Zinc (II) ions selectively interact with DNA sequences present at the TFIIIA binding site of the Xenopus 5S-RNA gene. Nucl Acids Res 1995: 23: 246^71.
  17. Rodriguez H, Drouin R, Holmquist GP, et al. Mapping of copper/hydrogen peroxide-induced DNA damage at nucleotide resolution in human genomic DNA by ligation-mediated polymerase chain reaction. J Biol Chem 1995: 270: 17633-40.
  18. Samuni A, Aronovitch J, Godinger D, Chevion M, Czapski G. On the cytotoxicity of vitamin C and metal ions. Eur J Biochem 1983: 137: 119-24.
  19. Henner WD, Granburg SM, Haseltine WA. Sites and structure of y radiation-induced DNA strand breaks. J Biol Chem 1982: 257: 11750^.
  20. Seeberg E, Eide L, Bjoras M. The base excision repair pathway. Trends Biochem Sci 1995: 20: 391-7.
  21. Cunningham RP. DNA glycosylases. Mutat Res 1997: 383: 189-96.
  22. Krokan HE, Standal R, Slupphaug G. DNA glycosylases in the base excision repair of DNA. Biochem J W1: 325:1-16.
  23. Rothwell DG, Barzilay G, Gorman M, Morera S, Freemont P, Hickson ID. The structure and functions of the HAPl/Ref-1 protein. Oncol Res 1997: 9: 275-80.
  24. Wilson SH. Mammalian base excision repair and DNA polymerase β. Mutat Res 1998: 407: 203-15.
  25. Stuck M, Pascucci B, Parlanti E, Fortini P, Wilson SH, Hubscher U, Dogliotti E. Mammalian base excision repair by DNA polymerases delta and epsilon. Oncogene 1998: 17: 835-43.
  26. Klungland A, Lindahl T. Second pathway for completion of human DNA base excision-repair: reconstitution with purified proteins and requirement for DNase IV (FEN1). EM BO J 1997: 16: 3341-8.
  27. Caldecott KW, McKeown CK, Tucker JD, Ljungquist S, Thompson LH. An interaction between the mammalian DNA repair protein XRCC1 and DNA ligase III. Mol Cell Biol 1994: 14: 68-76.
  28. Nash RA, Caldecott KW, Barnes DE, Lindahl T. XRCC1 protein interacts with one of two distinct forms of DNA ligase III. Biochemistry 1997: 36: 5207-11.
  29. Trucco C, Oliver FJ, de Murcia G, Menissier-de Murcia J. DNA repair defect in poly(ADP-ribose) polymerase-deficient cell lines. Nucleic Acids Res 1998: 26: 2644-9.
  30. Karran P, Lindahl T, Ofsteng I, Evensen GB, Seeberg E. Escherichia coli mutants deficient in 3-methyladenine-DNA glycosylase. J Mol Biol 1980: 140:101-27.
  31. Clarke ND, Kvaal M, Seeberg E. Cloning of Escherichia coli genes encoding 3-methyladenine DNA glycosylases I and II. Mol Gen Genet 1984: 197: 368-72.
  32. Lindahl T, Ljungquist S, Siegert W, Nyberg B, Sperens B. DNA N-glycosidases: properties of uracil-DNA glycosidase from Escherichia coli. J Biol Chem 1977: 252: 3286-94.
  33. Duncan BK, Chambers JA. The cloning and overproduction of Escherichia coli uracil-DNA Glycosylase. Gene 1988:28:211-9.
  34. Michaels ML, Pham L, Nghiem Y, Cruz C, Miller JH. MutY, an adenine glycosylase active on G-A mispairs, has homology to endonuclease III. Nucleic Acids Res 1990: 18: 3841-5.
  35. Gallinari P, Jiricny J. A new class of uracil-DNA glycosylases related to human thymine-DNA glycosylase. Nature 1996: 383: 735-8.
  36. Breimer L, Lindahl T. A DNA glycosylase from Escherichia coli that releases free urea from a polydeoxyribonucleotide containing fragments of base residues. Nucl Acids Res 1980: 8: 6199-211.
  37. Asahara H, Wistort PM, Bank JF, Bakerian RH, Cunningham RP. Purification and characterization of Escherichia coli endonuclease III from the cloned nth gene. Biochemistry 1989: 28: 4444-9.
  38. Chetsanga CJ, Lindahl T. Release of 7-methylguanine residues whose imidazole rings have been opened from damaged DNA by a DNA glycosylase from Escherichia coli. Nucleic Acids Res 1979: 6: 3673-84.
  39. Boiteux S, O'Connor TR, Laval J. Formamidopyrimidine-DNA glycosylase of Escherichia coli: cloning and sequencing of the fpg structural gene and overproduction of the protein. EM BO J 1987: 6: 3177-83.
  40. Jiang D, Hatahet Z, Blaisdell JO, Melamede RJ, Wallace SS. Escherichia coli endonuclease VIII: cloning, sequencing, and overexpression of the nei structural gene and characterization of nei and neinth mutants. J Bacteriol 1997: 179: 3773-82.
  41. Evensen G, Seeberg E. Adaptation to alkylation resistance involves the induction of a DNA glycosylase. Nature 1982: 296: 773-5.
  42. Berdal KG, Johansen RF, Seeberg E. Release of normal bases from intact DNA by a native DNA repair enzyme EM BO J 1998: 17: 363-7.
  43. Olsen LC, Aasland R, Vvittwer CU, Krokan HE, Holland DE. Molecular cloning of human uracil-DNA glycosylase, a highly conserved DNA repair enzyme. EMBO J 1989: 8: 3121-5.
  44. O'Connor TR, Laval J. Human cDNA expressing a functional DNA glycosylase excising 3-methyladenine and 7-methylguanine. Biochem Biophys Res Commun 1991: 176: 1170-7.
  45. Samson L, Derfler B, Boosalis M, Call K. Cloning and characterization of a 3-methyladenine DNA glycosylasecDNA from human cells whose gene maps to chromosome 16. Proc Nati Acad Sci USA 1991: 88:9127-31.
  46. Chakravarti D, Ibeanu GC, Tano K, Mitra S. Cloning and expression in Escherichia coli of a human cDNA encoding the DNA repair protein N-methylpurine-DNA glycosylase. J Biol Chem 1991: 266: 15710-5.
  47. Neddermann P, Gallinari P, Lettieri T, Schmid D, Truong 0, Hsuan JJ, Wiebauer K, Jiricny J. Cloning and expression of human G/T mismatch-specific thymine-DNA glycosylase. J Biol Chem 1996: 271: 12767-74.
  48. Aspinwall R, Rothwell DG, Roldan-Arjona T, et al. Cloning and characterization of a functional human homolog of Escherichia coli endonuclease III. Proc Nati Acad Sci USA 1997: 94: 109-14.
  49. Hilbert TP, Chaung W, Boorstein RJ, Cunningham RP, Teebor GW. Cloning and expression of the cDNA encoding the human homologue of the DNA repair enzyme, Escherichia coli endonuclease III. J Biol Chem 1997: 2: 733-40.
  50. Bjoras M, Luna L, Johnsen B, Hoff E, Haug T, Rognes T, Seeberg E. Opposite base-dependent reactions of a human base excision repair enzyme on DNA containing 7, 8-dihydro-8-oxoguanine and abasic sites. EMBO J 1997: 16: 6314-22.
  51. Roldan-Arjona T, Wei YF, Carter KC, Klungland A, Anselmino C, Wang RP, Augustus M, Lindahl T. Molecular cloning and functional expression of a human cDNA encoding the antimutator enzyme 8-hydroxyguanine-DNA glycosylase. Proc Nati Acad Sci USA 1997: 94: 8016-20.
  52. Radicella JP, Dherin C, Desmaze C, Fox MS, Boiteux S. Cloning and characterization ofhOGGI, a human homolog of the OGG1 gene of Saccharomyces cerevisiae. Proc Nati Acad Sci USA 1997: 94: 8010-5.
  53. Lu R, Nash HM, Verdine GL. A mammalian DNA repair enzyme that excises oxidatively damaged guanines maps to a locus frequently lost in lung cancer. Curr Biol 1997: 7: 397-^1-07.
  54. Kuo FC, Sklar J Augmented expression of a human gene for 8-oxoguanine DNA glycosylase (MutM) in B lymphocytes of the dark zone in lymph node germinal centers. J Exp Med 1997: 186: 1547-56.
  55. Aral K, Morishita K, Shinmura K, Kohno T, Kim SR, Nohmi T, Taniwaki M, Ohwada S, Yokota J. Cloning of a human homolog of the yeast OGG1 gene that is involved in the repair of oxidative DNA damage. Oncogene 1997: 14: 2857-61.
  56. Slupska MM, Baikalov C, Luther WM, Chiang JH, Wei YF, Miller JH. Cloning and sequencing a human homolog (hMYH) of the Escherichia coli mutYgene whose function is required for the repair of oxidative DNA damage. J Bacteriol 1996: 178: 3885-92.
  57. Sun B, Latham KA, Dodson ML, Lloyd RS. Studies on the catalytic mechanism of five DNA glycosylases. Probing for enzyme-DNA imino intermediates. J Biol Chem 1995: 270: 19501-8.
  58. Lindahl T. Instability and decay of the primary structure of DNA. Nature 1993: 362: 709-15.
  59. Engelward BP, Weeda G, Wyatt MD, et al. Base excision repair deficient mice lacking the Aag alkyladenine DNA glycosylase. Proc Nati Acad Sci USA 1997: 94: 13087-92.
  60. Hang B, Singer B, Margison GP, Elder RH. Targeted deletion of alkylpurine-DNA-N-glycosylase in mice eliminates repair of 1, N6-ethenoadenine and hypoxanthine but not of 3, N4-ethenocytosine or 8-oxoguanine. Proc Nati Acad Sci USA 1997: 94: 12869-74.
  61. Elder RH, Jansen JG, Weeks RJ, et al. Alkylpurine-DNA-N-glycosylase knockout mice show increased susceptibility to induction of mutations by methyl methanesulfonate. Mol Cell Biol 1998: 18: 5828-37.
  62. Thayer MM, Ahern H, Xing D, Cunningham RP, Tainer JA. Novel DNA binding motifs in the DNA repair enzyme endonuclease III crystal structure EM BO J 1995: 14: 4108-20.
  63. Yamagata Y, Kato M, Odawara K, et al. Three-dimensional structure of a DNA repair enzyme, 3-methyladenine DNA glycosylase II, from Escherichia coli. Cell 1996: 86: 311-9.
  64. Labahn J, Scharer OD, Long A, Ezaz-Nikpay K, Verdine GL, Ellenberger TE. Structural basis for the excision repair of alkylation-damaged DNA. Cell 1996: 86: 321-9.
  65. Radman M. An endonuclease from Escherichia coli that introduces single polynucleotide chain scissions in ultraviolet-irradiated DNA. J Biol Chem 1976: 251: 1438-45.
  66. Eide L, Bjoras M, Pirovano M, Alseth I, Berdal KG, Seeberg E. Base excision of oxidative purine and pyrimidine DNA damage in Saccharomyces cerevisiae by a DNA glycosylase with sequence similarity to endonuclease III from Escherichia coli. Proc Nati Acad Sci USA 1996: 93: 10735-40.
  67. Luna L, Bjoras M, Johnes B, Rognes T, Seeberg E. Structure and function of mouse genes for base removal of oxidative DNA damage (submitted).
  68. Augeri L, Lee YM, Barton AB, Doetsch PW. Purification, characterization, gene cloning, and expression of Saccharomyces cerevisiae redoxyendonuclease, a homolog of Escherichia coli endonuclease III. Biochemistry 1997: 36: 721-9.
  69. Alseth I, Eide L, Pirovano M, Rognes T, Seeberg E, Bjeras M. The S cerevisiae homologues of endonuclease III from E. coli, Ntgl and Ntg2, are both required for efficient repair of spontaneous and induced oxidative DNA damage in yeast, (submitted).
  70. Luna L, Bjoras M, Seeberg E. Intracellular sorting and cell-cycle regulation of base excision repair genes in human cells (manuscript in prep.)
  71. Maki H, Sekiguchi M. MutT protein specifically hydrolyses a potent mutagenic substrate for DNA synthesis. Nature 1992: 355: 273-5.
  72. Oda H, Nakabeppu Y, Furuichi M, Sekiguchi M. Regulation of expression of the human MTH1 gene encoding 8-oxo-dGTPase. Alternative splicing of transcription products. J Biol Chem 1997: 272: 17843-50.
  73. van der Kemp PA, Thomas D, Barbey R, de Oliveira R, Boiteux S. Cloning and expression in Escherichia coli of the OGG1 gene of Saccharomyces cerevisiae, which codes for a DNA glycosylase that excises 7, 8-dihydro-8-oxoguanine and 2, 6-diamino-4-hydroxy-5-N-methylformamidopyrimidine. Proc Nati Acad Sci USA 1996: 93: 5197-202.
  74. Nash HM, Bruner SD, Scharer OD, Kawate T, Addona TA, Spooner E, Lane WS, Verdine GL. Cloning of a yeast 8-oxoguanine DNA glycosylase reveals the existence of a base-excision DNA-repair protein superfamily. Curr Biol 1996: 6: 968-80.
  75. Bjelland S, Birkeland NK, Benneche T, Volden G, Seeberg E. DNA glycosylase activities for thymine residues oxidized in the methyl group are functions of the AlkA enzyme in Escherichia coli. J Biol Chem 1994: 269: 30489-95.
  76. Berdal KG, Bjoras M, Bjelland S, Seeberg E. Cloning and expression in Escherichia coli of a gene for an alkylbase DNA glycosylase from Saccharomyces cerevisiae, a homologue to the bacterial alkA gene. EMBO J 1990: 9: 4563-8.
  77. Chen J, Derfler B, Samson L. Saccharomyces cerevisiae 3-methyladenine DNA glycosylase has homology to the AlkA glycosylase of E. coli and is induced in response to DNA alkylation damage. EMBO J 1990: 9: 4569-75.
  78. Glassner BJ, Rasmussen LJ, Najarian MT, Posnick LM, Samson LD. Generation of a strong mutator phenotype in yeast by unbalanced base excision repair. Proc Nati Acad Sci USA 1998: 95: 9997-10002.
< Previous | Contents | Next >