Innovita Research Foundation

I.R.F. / Survey / Chapter 4

Download printable version

Aging, The Molecular Concepts

Chapter 4 References

  1. Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol 1956: 2: 298-300.
  2. Sohol RS, Weindruch R. Oxidative stress, caloric restriction, and aging. Science 1996: 273: 59-63.
  3. Ames BN, Shigenaga MKL, Hagan TM. Oxidants, antioxidants, and the degenerative diseases of aging. Proc Nati Acad Sci USA 1993: 90: 7915-22.
  4. Lindahl T, Nyberg B. Rate of depurination of native deoxyribonucleic acid. Biochemistry 1972: 11: 3610-7.
  5. Loeb LA, Preston BD. Mutagenesis by apurinic/apyrimidinic sites. Ann Rev Genet 1986: 20: 201-30.
  6. Singer B, Bartsch H, eds. The role of cyclic nucleic acid adducts in carcinogenesis and mutagenesis. Lyon: IARC Scientific Publications 70, 1986.
  7. Frenkel K. Carcinogen-mediated oxidant formation and oxidative DNA damage. Pharmac Ther 1992: 53: 127-66.
  8. Shibutani S, Takeshita M, Grollman AP. Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature 1991: 349: 431-4.
  9. Tchou J, Grollman AP. Repair of DNA containing the oxidatively-damaged base, 8-oxoguanine. Mutat Res 1993: 299: 277-87.
  10. Wood ML, Dizdaroglu M, Gajewski E, Essigmann JM. Mechanistic studies of ionizing radiation and oxidative mutagenesis: genetic effects of a single 8-hydroxyguanine (7-hydro-8-oxoguanine) residue inserted at a unique site in a viral genome. Biochemistry 1990: 29: 7024-32.
  11. Moriya M, Ou C, Bodepudi V, Johnson F, Takeshita M, Grollman AP. Site specific mutagenesis using a gapped duplex vector: a study of translesion synthesis past 8-oxodeoxyguanosine in E. coli. Mutat Res 1991: 254: 281-8.
  12. Cheng KC, Cahill DS, Kasai H, Nishimura S, Loeb LA. 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G&8212;>T and A&8212;>C substitutions. J Biol Chem 1992: 267: 166-72.
  13. Moriya M. Single strand shuttle phagemid for mutagenesis studies in mammalian cells: 8-oxoguanine in DNA induces targeted G: C>T:A transversions in simian kidney cells. Proc Nati Acad Sci USA 1993:90: 1122-6.
  14. Grollman AP, Moriya M. Mutagenesis by 8-oxoguanine: an enemy within. Trends Genet 1993: 9: 246-9.
  15. Kouchakdjian M, Bodepudi V, Shibtani S, et al. NMR structural studies of the ionizing radiation adduct 7-hydro-8-oxodeoxyguanosine (8-oxo-7H-dG) opposite deoxyadenosine in a DNA duplex: 8-oxo-7H-dG. dA alignment at the lesion site. Biochemistry 1991: 30: 1403-12.
  16. McAuley-Hect KE, Leonard GA, Gibson NJ, et al. Crystal structure of a DNA duplex containing 8-hydroxydeoxyguanine-adenine base pairs. Biochemistry 1994: 33: 10266-70.
  17. O'Connor TR, Boiteux S, Laval J. Ring-opened 7-methylguanine residues in DNA are a block to in vitro DNA synthesis. Nucl Acids Res 1988: 16: 5879-94.
  18. Michaels ML, Miller JH. The GO system protects organisms from the mutagenic effect of the spontaneous lesion 8-hydroxyguanine (7,8-dihydro-8-oxoguanine). J Bacteriol 1992: 174: 6321-5.
  19. Maki H, Sekiguchi M. MutT protein specifically hydrolyses a potent mutagenic substrate for DNA synthesis. Nature 1992: 355: 273-5.
  20. Michaels ML, Pham Y, Cruz C, Miller JH. MutM, a protein that prevents GC&8212;>TA transversions, is formamidopyrimidine-DNA glycosylase. Nucl Acids Res 1991: 19: 3629-32.
  21. Au KLG, dark S, Miller JH, Modrich P. Escherichia coli mutY gene encodes an adenine glycosylase active on G-A mispairs. Proc Nati Acad Sci USA 1989: 86: 8877-81.
  22. Michaels ML, Cruz C, Grollman AP, Miller JH. Evidence that MutY and MutM combine to prevent mutations by an oxidatively damaged form of guanine in DNA. Proc Nati Acad Sci USA 1992: 89: 7022-5.
  23. Aburatani H, Hippo Y, Ishida R, et al. Cloning and characterization of mammalian 8-hydroxyguanine-specific DNA glycosylase/apurinic, apyrimidinie lyase, a functional mutM homologue. Cancer Res 1997: 57: 2151-6.
  24. Sakumi K, Furuichi M, Tsuzuki T, et al. Cloning and expression of cDNA for a human enzyme that hydrolyzes 8-oxo-dGTP, a mutagenic substrate for DNA synthesis. J Biol Chem 1993: 268: 23524-30.
  25. Slupska MM, Baikalov C, Luther WM, Chiang J-H, Wei Y-F, Miller JH. Cloning and sequencing a human homolog {hMYH) of the Escherichia coli mutY gene whose function is required for the repair ofoxidative DNA damage. J Bacterial 1996: 178: 3885-92.
  26. Rosenquist T, Zharkov DO, Grollman AP. Cloning and characterization of a mammalian 8-oxoguanine DNA glycosylase. Proc Nati Acad Sci USA 1997: 94: 7429-34.
  27. Strauss BS. The "A rule" of mutagenic specificity: a consequence of DNA polymerase bypass. Bio Essays 1991: 13: 79-84.
  28. Boiteux S, Laval J. Coding properties of poly deoxycytidylic acid templates containing uracil or apyrimidinie sites: In vitro modulation of mutagenesis by DNA repair enzymes. Biochemistry 1982: 21: 6746-51.
  29. Sagher D, Strauss B. Insertion of nucleotides opposite purinic/apyrimidinic sites in deoxyribonucleic acid during in vitro synthesis: uniqueness of adenine nucleotides. Biochemistry 1983: 22: 4518-26.
  30. Randall SIC, Eritja R, Kaplan BE, Petruska J, Goodman ME Nucleotide insertion kinetics opposite abasic lesions in DNA. J Biol Chem 1987: 262: 6864-70.
  31. Takeshita M, Chang C-N, Johnson F, Will S, Grollman AP. Oligodeoxynucleotides containing synthetic abasic sites. Model substrates for DNA polymerases and apurinic/apyrimidinic endonucleases. J Biol Chem 1987: 262: 10171-9.
  32. Shibutani S, Takeshita M, Grollman AP. Translesional synthesis on DNA templates containing a single abasic site. J Biol Chem 1997: 272: 13916-22.
  33. Mozzherin DJ, Shibutani S, Tan C-K, Downey KM, Fisher PA. Proliferating cell nuclear antigen promotes DNA synthesis past template lesions by mammalian DNA polymerase . Proc Nati Acad Sci USA 1997: 94: 6126-31.
  34. Shaaper RM, Kunkel TA, Loeb LA. Infidelity of DNA synthesis associated with bypass of apurinic sites. Proc Nati Acad Sci USA 1983: 80: 487-91.
  35. Lawrence CW, Borden A, Banerjee SK, LeClerc JE. Mutation frequency and spectrum resulting from a single abasic site in a single-stranded vector. Nucl Acids Res 1990: 18: 2153-7.
  36. Nelson JR, Lawrence CW, Winkle DC. Deoxycitidyl transferase activity of yeast REV1 protein. Nature 1996: 382: 729-31.
  37. Takeuchi M, Lillis R, Demple B, Takeshita M. Interactions of Escherichia coli endonuclease IV and exonuclease III with abasic sites in DNA. J Biol Chem 1994: 269: 21907-14.
  38. Kunz BA, Henson ES, Roche H, Ramator D, Nunoshiba T, Demple B. Specificity of the imitator caused by deletion of the yeast structural gene {APN1} for the major apurinic endonuclease. Proc Nati Acad Sci USA 1994: 91: 8165-9.
  39. Gentil A, Cabral-Neto JB, Mariage-Samson R, et al. Mutagenicity of a unique apurinic/apyrimidinic site in mammalian cells. J Mol Biol 1992: 227: 981^.
  40. Takeshita M, Eisenberg W. Mechanism of mutation of DNA templates containing synthetic abasic sites: study with a double strand vector. Nucl Acids Res 1994: 22: 1897-1902.
  41. Gibbs PE, Lawrence CW. Novel mutagenic properties of abasic sites in Saccharomyces cerevisiae. J Mol Biol 1995: 251: 229-36.
  42. Povirk LF, Goldberg IH. Endonuclease resistant apyrimidinic sites formed by neocarzinostatin at cytosine residue in DNA: evidence for a possible role in mutagenesis. Proc Nati Acad Sci USA 1985: 82: 3182-6.
  43. Bennett RAO, Swerdlow PS, Povirk LF. Spontaneous cleavage of bleomycin-induced abasic sites in chromatin and their mutagenicity in mammalian shuttle vectors. Biochemistry 1993: 32: 3188-95.
  44. Kunkel TA. Mutational specificity of depurination. Proc Nati Acad Sci USA 1984: 81: 1494-8.
  45. Shibutani S. Quantitation of base substitutions and deletions induced by chemical mutagens during DNA synthesis in vitro. Chem Res Toxicol 1993: 6: 625-9.
  46. Shibutani S, Grollman AP. On the mechanism of frameshift (deletion) mutagenesis in vitro. J Biol Chem 1993:268: 11703-10.
  47. Kunkel TA, Soni A. Mutagenesis by transient misalignment. J Biol Chem 1988: 263: 14784-9.
  48. Boosalis MS, Mosbaugh DW, Hamatake R, Sugino A, Kunkel TA, Goodman MF. Kinetic analysis of base substitution mutagenesis by transient misalignment of DNA and miscoding. J Biol Chem 1989:264: 11360-6.
  49. Ward JF. DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation and repairability. Prog Nucl Acid Res Mol Biol 1993: 35: 95-125.
  50. Nair J, Barbin A, Guichard Y, Bartsch H. 1 .A- ethenodeoxyadenosine and 3,A-ethenodeoxycytidine in liver DNA from humans and untreated rodents detected by immunoaffinity/P-postlabeling. Carcinogenesis 1995: 16: 613-7.
  51. Ghissassi FE, Bartin A, Nair J, Bartsch H. Formation of 1 ,A-ethenodeoxyadenine and 3,A-etheno-deoxycytosine by lipid peroxidation products and nucleic acid bases. Chem Res Toxicol 1995: 8:278-83.
  52. Chung FL, Young R, Hecht SS. Formation of cyclic 1 .A^-propanodeoxyguanosine adducts in DNA upon reaction with acrolein or crotonaldehyde. Cancer Res 1984: 44: 990-5.
  53. Moriya M, Zhang W, Johnson F, Grollman AP. Mutagenic potency of exocyclic DNA adducts: marked differences between Escherichia coli and simian kidney cells. Proc Nati Acad Sci USA 1994: 91: 11899-903.
  54. Pandya GA, Moriya M. 1 ,A^-Ethenodeoxyadenosine, a DNA adduct highly mutagenic in mammalian cells. Biochemitry 1996: 35: 11487-92.
  55. Zhang W, Johnson F, Grollman AP, Shibutani S. Miscoding by the exocyclic and related DNA adducts 3,A-etheno-2'-deoxycytidine, 3,74-ethano-2-deoxycytidine, and 3-(2-hydroxyethyl)-2'-deoxyuridine. Chem Res Toxicol 1995: 8: 157-63.
  56. Kouchakdjian M, Eisenberg M, Yarema K, Basu A, Essigmann J, Patel DJ. NMR studies of the exocyclic 1 .A^-ethenodeoxyadenosine adduct (edA) opposite thymidine in a DNA duplex. Nonplanar alignment of ed\(anti) and dT{anti) at the lesion site. Biochemistry 1991: 30: 1820-8.
  57. Cullinan D, Johnson F, Grollman AP, Eisenberg M, de los Santos C. Solution structure of a DNA duplex containing the exocyclic lesion 3,A4-etheno-2-deoxycytidine opposite 2'-deoxyguanosine. Biochemistry 1996: 36: 11933-43.
  58. Cullinan D, Korobka A, Grollman AP, Patel DJ, Eisenberg M, de los Santos C. NMR solution structure of an oligodeoxynucleotide duplex containing the exocyclic lesion 3,A4-etheno-2-deoxycytidine opposite thymidine: comparison with the duplex containing deoxyadenosine opposite the adduct. Biochemistry 1996: 35: 13319-27.
  59. Kouchakdjian M, Marinelli E, Gao X, Johnson F, Grollman AP, Patel DJ. NMR studies of exocyclic l.A-propanodeoxyguanosine adducts (X) opposite purines in DNA duplexes: protonated X(syn): A{anti) pairing (acidic pH) and P(syn):G(anti) pairing (neutral pH) at the lesion site. Biochemistry 1989: 28: 5647-57.
  60. Szilard L. On the nature of the aging process. Proc Nati Acad Sci USA 1959: 45: 35-45.
  61. Burnet FM. Intrinsic mutagenesis: a genetic approach to aging. New York: Wiley, 1974.
  62. Vijg J, Gossen JA. Somatic mutations and cellular aging. Comp Biochem Physiol 1993: 104B: 429-37.
  63. Campisi J. Replicative senescence: an old lives' tale? Cell 1996: 84: 497-500.
  64. Lindahl T. Instability and decay of the primary structure ofDNA. Nature 1993: 362: 709-15.
  65. Friedberg EC, Walker GC, Siede W. DNA repair and mutagenesis. Washington DC: ASM Press, 1995.
  66. Dolle MET, Giese H, Hopkins CL, Martus H-J, Hausdorff JM, Vijg J. Rapid accumulation of genome rearrangements in liver but not in brainof old mice. Nature Genet 1997: 17: 431-4.
  67. Bronson RT, Lipman RD. Reduction in rate of occurrence of age-related lesions in dietary restricted laboratory mice. Growth Dev Aging 1991: 55: 169-84.
  68. Yu, C-E, Oshima J, Fu Y-H, Wijsman EM, Hisama F, Alisch R, et al. Positional cloning of the Werner's syndrome gene. Science 1996: 272: 258-62.
  69. Van Gool AJ, Van der Horst GTJ, Citterio E, Hoeijmakers JHJ. Cockayne syndrome: defective repair of transcription? EMBO J 1997: 16: 4155-62.
  70. Shiloh Y, Rotman G. Ataxia-telangiectasia and the ATM gene: linking neurodegeneration, immunodeficiency, and cancer to cell cycle checkpoints. J Clin Immunol 1996: 16: 254-60.
  71. Fukuchi K, Martin GM, Monnat RJ Jr. Mutator phenotype of Werner syndrome is characterized by extensive deletions. Proc Nati Acad Sci USA 1989: 86: 5893-7.
  72. Hartwell LH, Kastan MB Cell cycle control and cancer. Science 1994: 266: 1821-7.
  73. Levine AJ. p53, the cellular gatekeeper for growth and division. Cell 1997: 88: 323-31.
  74. Lowe SW, Schmitt SW, Smith SW, Osborne BA, Jacks T. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 1993: 362: 847-9.
  75. Savitsky K, Sfez S, Tagle DA Ziv Y, Sartiel A, Collins FS, Shiloh Y, Rotman G. The complete sequence of the coding region of the ATM gene reveals similarity to cell cycle regulators in different species. Human Molecular Genetics 1995: 4: 2025-32.
  76. Hawley RS, Friend SH. Strange bedfellows in even stranger places: the role of ATM in meiotic cells, lymphocytes, tumors, and its functional links to p53. Genes Dev 1996: 10: 2383-8.
  77. Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S, Bronson RT, Weinberg RA. Tumor spectrum analysis in p53-mutant mice. Current Biology 1994: 4: 1-7.
  78. Bootsma D. Genetic basis of human cancer. Vogelstein B, Kinzler KW, eds. Chapter 13. New York: McGraw-Hill, 1998: 245-74.
  79. Hoeijmakers JHJ. Human nucleotide excision repair syndromes: molecular clues to unexpected intricacies. Eur J Cancer 1994: 30A: 1912-21.
  80. Cleaver JE, Kraemer KH. The Metabolic and Molecular Bases of Inherited Disease. Scriver CR, Beaudet AL, Sly WS, Valle D (eds). 7th ed., Vol. III. New York: McGraw-Hill, pp. 4393^19, 1995.
  81. De Vries A, Van Oostrom CThM, Hofhuis FMA, Dortant PM, Berg RJW, de Gruiji FR, Wester PW, Van Kreiji CF, Capel PJA, Van Steeg H, Verbeek SJ. Increased susceptibility to ultraviolet-B and carcinogens of mice lacking the DNA excision repair gene XPA. Nature 1995: 377: 169-73.
  82. De Vries A, Van Oostrom CThM, Dortant PM, Beems RB, Van Kreij CF, Capel PJA, Van Steeg H. Spontaneous liver tumours and Benzo(a)pyrene-induced lymphomas in XPA-deficient mice. Mol Carcinogen 1997: 19: 46-53.
  83. Gu H, Marth JD, Orban PC, Mossmann H, Rajewsky K. Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science 1994: 265: 103-6.
  84. Strehler BL, Freeman MR. Randomness, redundancy and repair: roles and relevance to biological aging. Mech Ageing Dev 1980: 14: 15-38.
  85. Martin GM. Cellular Aging-Postreplicative cells. A review (part II). Am J Path 1977: 89: 513-30.
  86. Heidi Giese, Martijn E. T. Dolle, Harry van Steeg & Jan Vijg: Organ-specific mutation accumulation in aging mice with defined defects in genome stability systems. Mol. Biol. Of Aging 1998: 225-239
< Previous | Contents | Next >