Innovita Research Foundation

I.R.F. / Survey / Chapter 1

Download printable version

Aging, The Molecular Concepts

Chapter 1 References

  1. Schachter F, Faure-Delanef L, Gu'enot P, et al. Genetic associations with human longevity at the APOE and ACE loci. Nat Genet 1994: 6: 29-32.
  2. Martin GM. Genetic syndromes in man with potential relevance to the pathobiology of aging. Birth Defects Orig Artic Ser 1978: 14: 5-39.
  3. Brown WT, Kieras PJ, Houck GE Jr., Dutkowski R, .Jenkins EC. A comparison of adult and childhood progerias: Werner syndrome and Hutchinson-Gilford progeria syndrome. Adv Exp Med BiG/ 1985: 190: 229-44.
  4. Martin GM. Syndromes of accelerated aging. Nat/ Cancer Inst MDnDgr 1982: 60: 241-7.
  5. Evans DA, Punkenstein HH, Albert MS, et al. Prevalence of Alzheimer's disease in a community population of older persons: higher than previously reported. JAMA 1989: 262: 2551--6.
  6. Rose MR. Evolutionary biology of aging. New York: Oxford University Press, 1991.
  7. Martin GM, Austad SN, Johnson TE. Genetic analysis of ageing: role of oxidative damage and environmental stresses. Nat Genet 1996: 13: 25-34.
  8. Martin GM. The Werner mutation: does it lead to a "public" or "private" mechanism of aging? Mol Med 1997: 3: 356-8.
  9. Goto M, Miller RW, Ishikawa Y, Sugano H. Excess Of rare cancers in Werner syndrome (adult progeria). Cancer Epidemiol Biomarkers Prev 1996: 5: 239-46.
  10. Martin GM, Sprague CA, Epstein CJ. Replicative life span of cultivated human cells: effects of donor's age, tissue, and genotype. Lab Invest 1970: 23: 86-92.
  11. Oshima J, Campisi J, Tannock TC, Martin GM. Regulation of c-fos expression in senescing Werner syndrome fibroblasts differs from that observed in senescing fibroblasts from normal donors. J Cell Physiol 1995: 162: 277-83.
  12. Poot M, Hoehn H, Runger TM, Martin GM. Impaired S-phase transit of Werner syndrome cells expressed in Iymphoblastoid cell lines. Exp Cell Res 1992: 202: 267-73.
  13. Schulz VP, Zakian VA, Ogburn CE, et al. Accelerated loss of telomeric repeats may not explain accelerated replicative decline of Werner syndrome cells. Hum Genet 1996: 97: 75G-4.
  14. Albert RE, Benjamin SA, Shukla R. Lifespan and cancer mortality in the beagle dog and humans. Mech Aging Dev 1994: 74: 149-59.
  15. Yu CE, Oshima J, Fu YH, et al. Positional cloning of the Werner's syndrome gene. Science 1996: 272: 258-62.
  16. Oshima J, Yu CE, Piussan C, et al. Homozygous and compound heterozygous mutations at the Werner syndrome locus. Hum Mol Genet 1996: 5: 1909-13.
  17. Yu CE, Oshima J, Wijsman EM, et al. Mutations in the consensus helicase domains of the Werner syndrome gene. Am J Hum Genet 1997: 60: 33G-41.
  18. Suzuki N, Shimamoto A, Imamura 0, et al. ONA helicase activity in Werner's syndrome gene product synthesized in a baculovirus system. Nucl Acids Res 1997: 25: 2973-8.
  19. Gray MO, Shen JC, Kamath-Loeb AS, et al. The Werner syndrome protein is a ONA helicase. Nat Genet 1997: 17: 100-3.
  20. Marciniak RA, Lombard OB, Johnson FB, Guarente L. Nucleolar localization of the Werner syndrome protein in human cells. Proc Natl Acad Sci USA 1998: 95: 6887-92.
  21. Gray MO, Wang L, Youssoufian H, Martin GM, Oshirna J. Werner helicase is localized to transcriptionally active nucleoli of cycling cells. Exp Cell Res 1998: 242: 487-94.
  22. Epstein CJ, Martin GM, Schultz AL, Motulsky AG. Werner's syndrome a review of its symptomatology, natural history, pathologic features, genetics and relationship to the natural aging process. Medicine 1966: 45: 177-221.
  23. Ogburn CE, Oshima J, Poot M, et aI. An apoptosis-inducing genotoxin differentiates heterozygotic carriers for Werner helicase mutations from wild-type and homozygous mutants. H~mGenet 1997: 101: 121-5.
  24. Goto M, Tanimoto K, Horiuchi Y, Sasazuki T. Family analysis of Werner's syndrome: a survey of 42 Japanese families with a review of the literature. Clin Genet 1981: 19: 8-15.
  25. Ye L, Miki T, Nakura J, et al. Association of a polymorphic variant of the Werner helicase gene with myocardial infarction in a Japanese population. Am J Med Genet 1997: 68: 494-8.
  26. Orgel LE. The maintenance of the accuracy of protein synthesis and its relevance to aging. Biochemistry 1963: 49: 517-21.
  27. Orgel LE. The maintenance of the accuracy of protein synthesis and its relevance to aging: a correction. Proc Natl Acad Sci USA 1970: 67: 1476.
  28. Burnet M. Intrinsic mutagenesis: agenetic approach to ageing. New York: John Wiley & Sons, 1:974. 29.
  29. Martin GM. Somatic mutagenesis and antimutagenesis in aging research. In: Mutation research. Amsterdam: Elsevier 1996: 350: 35-41.
  30. Martin GM, Ogburn CE, Colgin LM, Gown AM, Edland SD, Monnat RJ, Jr. Somatic mutations are frequent and increase with age in human kidney epithelial cells. Hum Mol Genet 1996: 5: 215 - 21.
  31. Cole J, Skopek TR. Somatic mutant frequence mutation rates and mutational spectra in the human population in vivo. Mut Res 1994: 304: 33-105.
  32. Horn PL, Turker MS, Ogburn CE, Disteche CM, Martin GM. A cloning assay for 6-thioguanine resistance provides evidence against certain somatic mutational theories of aging. J Cell Physiol 1984: 121: 309-15.
  33. Martin GM, Smith AC, Ketterer DJ, Ogburn CE, Disteche CM. Increased chromosomal aberrations in first metaphases of cells isolated from the kidneys of aged mice.lsr J Med Sci 1985: 21: 296-301.
  34. Martin GM, Martin GR. The biologic basis of aging: implications for medical genetics. Med Genet 1996: 1: 439-53.
  35. Holmes DJ, Austad SN. Birds as animal models for the comparative biology of aging: a prospectus. J Gerontol A BioI Sci Med Sci 1995: 50: B59-B66.
  36. Sohal RS, Weindruch R. Oxidative stress, caloric restriction, and aging. Science 1996: 273: 59-63. 37. Sell DR,
  37. Lane MA, Johnson WA, et al. Longevity and the genetic determination of collagen glycoxidation kinetics in mammalian senescence. Proc Natl Acad Sci USA 1996: 93: 485-90.
  38. Ogburn CE, Austad SN, Holmes DJ, et al. Cultured renal epithelial cells from birds and mice: enhanced resistance of avian cells to oxidative stress and DNA damage. J Gerontol BioI Sci 1998: 53A: B287-92.
  39. Ogburn CE, Turker MS, Kavanagh TJ, et al. Oxygen-resistant multipotent embryonic carcinoma cell lines exhibit antimutator phenotvpes. Somat Cell Mol Genet 1994: 20: 361-70.
  40. Rattan SIS. Beyond the present crisis in gerontology. BioEssays 1985: 2: 226-8.
  41. Johnson TE, Lithgow GJ. The search for the genetic basis of aging: the identification of gerontogenes in the nematode Caenorhabditis elegans. J Am Ger Soc 1992: 40: 936-45.
  42. Johnson TE, Wood WB. Genetic analysis of the life-span of Caenorhabditis elegans. Proc Nati Acad Sci USA 1982: 79: 6603-7.
  43. Murphy EA. Genetics of longevity in man. In: Schneider ELE, ed. The genetics of aging. New York: Plenum, 1978: 261-301.
  44. Lints FA, Stoll J, Gruwez G, Lints CV An attempt to select for increased longevity in Drosophila melanogaster. Gerontology 1979: 25: 192-204.
  45. Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R. A C. elegans mutant that lives twice as long as wild type. Nature 1993: 366: 461-4.
  46. Shook D, Johnson TE. Mapping of quantitative trait loci affecting additional survival and fertility-related traits in Caenorhabditis elegans. Genetics: Submitted.
  47. Johnson TE, Lithgow GJ, Murakami S. Hypothesis: interventions that increase the response to stress offer the potential for effective life prolongation and increased health. J Gerontol Bio Sci 1996: 51:B392-5.
  48. Johnson TE. Aging can be genetically dissected into component processes using long-lived lines of Caenorhabditis elegans. Proc Nati Acad Sci USA 1987: 84: 3777-81.
  49. Johnson TE. The increased lifespan of age-1 mutants in Caenorhabditis elegans results from lowering the Gompertz rate of aging. Science 1990: 249: 908-12.
  50. Brooks A, Lithgow GJ, Johnson TE. Mortality rates in a genetically heterogeneous population of Caenorhabditis elegans. Science 1994: 263: 668-71.
  51. Vaupel JW, Johnson TE, Lithgow GJ. Rates of mortality in populations of Caenorhabditis elegans (Technical Comment). Science 1994: 266: 826.
  52. Vaupel JW, Carey JR, Christensen K, et al. Biodemographic trajectories of longevity. Science 1998: 280: 855-9.
  53. Shook DR, Brooks A, Johnson TE. Mapping quantitative trait loci affecting life history traits in the nematode Caenorhabditis elegans. Genetics 1995: 142: 801-17.
  54. Fabian TJ, Johnson TE. Identification of genes that are differentially expressed during aging in Caenorhabditis elegans. J Gerontol Biol Sci 1995: 50: B245-53.
  55. Hayflick L. Origins of longevity. In: Warner HR, ed. Modern biological theories of aging. New York: Raven Press, 1987: 21-34.
  56. Russell RL. Evidence for and against the theory of developmentally programmed aging. In: Warner HR, Butler RM, Sprott RL, Schneider EL, eds. Modern biological theories of aging. New York: Raven Press, 1987: 35-61.
  57. Johnson TE. Developmentally programmed aging: Future directions. In: Warner HR, Butler RM, Sprott RL, Schneider EL, eds. Modern biological theories of aging. New York: Raven Press, 1987: 63-76.
  58. Duhon SA, Johnson TE. Movement as an index of vitality: comparing wild type and the age-1 mutant of Caenorhabditis elegans. J Gerontol Biol Sci 1995: 50: B254-61.
  59. Fabian TJ, Johnson TE. Total RNA, rRNA and poly (A)'1" RNA abundances during aging in Caenorhabditis elegans. Mech Ageing Dev 1995: 83: 155-70.
  60. Lakowski B, Hekimi S. Determination of life-span in Caenorhabditis elegans by four clock genes. Science 1996: 272: 1010-3.
  61. Riddle DL, Albert PS. Genetic and environmental regulation ofdauer larva development. In: Riddle DL, Blumenthal T, Meyer BJ, Priess JR, eds. C. elegans II. New York: Cold Spring Harbor Press, Cold Spring Harbor, 1997: 739-68.
  62. Klass MR. A method for the isolation of longevity mutants in the nematode Caenorhabditis elegans and initial results. Mech Ageing Dev 1983: 22: 279-86.
  63. Duhon SA. Murakami S, Johnson TE. Direct isolation of longevity mutants in the nematode Caenorhabditis elegans. Dev Genet 1996: 18: 144-53.
  64. Friedman DB, Johnson TE. A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics 1988: 118: 75-86.
  65. Friedman DB, Johnson TE. Three mutants that extend both mean and maximum lifespan of the nematode, Caenorhabditis elegans define the age-1 gene. J Gerontol Biol Sci 1998: 43: B102-9.
  66. Johnson TE, Tedesco PM, Lithgow GJ. Comparing mutants, selective breeding, and transgenics in the dissection of aging processes of Caenorhabditis elegans. Genetica 1993: 91: 65-77.
  67. Malone EA, Inoue T, Thomas JH. Genetic analysis of the roles of daf-28 and age-1 in regulating Caenorhabditis elegans dauer formation. Genetics 1996: 143: 1193-205.
  68. Morris JZ, Tissenbaum HA, Ruvkun G. A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature 1996: 382: 536-9.
  69. Larsen PL. Aging and resistance to oxidative damage in Caenorhabditis elegans. Proc Nati Acad Sci USA 1993: 90: 8905-9.
  70. Vanfleteren JR. Oxidative stress and ageing in Caenorhabditis elegans. Biochem J 1993: 292: 605-8.
  71. Murakami S, Johnson TE. A genetic pathway conferring life extension and resistance to UV stress in Caenorhabditis elegans. Genetics 1996: 143: 1207-18.
  72. Lithgow GJ, White TM, Hinerfeld DA, Johnson TE. Thermotolerance of a long-lived mutant of Caenorhabditis elegans. J Gerontol Biol Sci 1994: 49: B270-6.
  73. Lithgow GJ, White TM, Melov S, Johnson TE. Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proc Nati Acad Sci USA 1995: 92: 7540-4.
  74. Melov S, Lithgow GJ, Fischer DR, Tedesco PM, Johnson TE. Increased frequency of deletions in the mitochondrial genome with age of Caenorhabditis elegans. Nucl Acids Res 1995: 23: 1419-25.
  75. Larsen PL, Albert PS, Riddle DL. Genes that regulate both development and longevity in Caenorhabditis elegans. Genetics 1995: 139: 1567-83.
  76. Varkey JP, Muhlrad PJ, Minniti AN, Do B, Ward S. The Caenorhabditis elegans spe-26 gene is necessary to form spermatids and encodes a protein similar to the actin-associated proteins kelch and scruin. Genes Devel 1995: 9: 1074-86.
  77. Rancourt DE, Tsuzuki T, Capecchi MR. Genetic interaction between hoxb-5 and hoxb-6 is revealed by nonallelic noncomplementa.tion. Genes Devel 1995: 9: 108-22.
  78. Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 1997: 277: 942-6.
  79. Ishii N, Suzuki N, Hartman PS, Suzuki K. The effects of temperature on the longevity of a radiation-sensitive mutant rad-8 of the nematode Caenorhabditis elegans. J Gerontol Biol Sci 1994: 49: Bin-20.
  80. VanVoorhies WA. Production of sperm reduces nematode lifespan. Nature 1992: 360: 456-8.
  81. Gems D, Riddle DR. Mating but not gamete production reduces longevity in Caenorhabditis elegans. Nature 1996: 379: 723-5.
  82. Wong A, Boutis P, Hekimi S. Mutations in the clk-1 gene of Caenorhabditis elegans affect developmental and behavioral timing. Genetics 1995: 139: 1247-59.
  83. Ewbank JJ, Barnes TM, Lakowski B, Lussier M, Bussey H, Hekimi S. Structural and functional conservation of the Caenorhabditis elegans timing gene clk-1. Science 1997: 273: 980-3.
  84. Lakowski B, Hekimi S. Determination of life-span in Caenorhabditis elegans by four clock genes. Science 1996: 272: 1010-3.
  85. Duhon SA. The isolation and characterization of Age Mutants on the nematode C. elegans. Unpublished Ph.D. thesis; 1996 University of Colorado, Boulder, CO.
  86. Murakami S, Johnson TE. Life extension and stress resistance modulated by the tkr-1 gene. Curr Biol 1998: 8: 1091-4.
  87. Dorman JP, Albinder B, Shroyer T, Kenyon C. The age-1 and daf-2 genes function in a common pathway to control the lifespan of Caenorhabditis elegans. Genetics 1995: 141: 1399-406.
  88. Ogg S, Paradis S, Gottlieb S, et al. The Forkhead transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 1997: 389: 994-9.
  89. Lin K, Dorman JB, Rodan A, Kenyon C. daf-16: An HNF-3/Forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 1997: 278: 1319-22.
  90. Martin GM, Austad SN, Johnson TE. Genetic analysis of aging: role of oxidative damage and environmental stresses. Nature Genet 1996: 13: 25-34.
  91. Masoro EJ, Austad SN. The evolution of the antiaging action of dietary restriction: a hypothesis. J Gerontol Biol Sci 1996: 51: B387-91.
  92. McGue M, Vaupel JW, Holm N, Harvald B. Longevity is moderately heritable in a sample of Danish twins born 1870-1880. J Gerontol Biol Sci 1993: 48: B237-44.
  93. Finch CE. Longevity, senescence, and the genome. Chicago: University of Chicago Press, 1990.
  94. Chen JB, Sun J, Jazwinski SM. Prolongation of the yeast lifespan by the v-Ha-RAS oncogene. Mol Microbiol 1990: 4: 2081-6.
  95. Jazwinski SM. Longevity, genes, and aging. Science 1996: 273: 54-9.
  96. Sun J, Kale SP, Childress AM, Pinswasdi C, Jazwinski SM. Divergent roles of RASl and RAS2 in yeast longevity J Biol Chem 1994: 269: 18638^5.
  97. Kale SP, Jazwinski SM. Differential response to UV stress and DNA damage during the yeast replicative lifespan. Dev Genet 1996: 18: 154-60.
  98. Jazwinski SM, Kim S, Lai C-Y, Benguria A. Epigenetic stratification: The role of individual change in the biological aging process. Exp Gerontol 1998: 33: 571-80.
  99. Mortimer RK, Johnston JR. Life span ofindividual yeast cells. Nature 1959: 183: 1751-2.
  100. Muller I, Zimmermann, M, Becker D, Flomer M. Calendar lifespan versus budding lifespan of Saccharomyces cerevisiae. Mech Ageing Dev 1980: 12: 47-52.
  101. Egilmez NK, Jazwinski SM. Evidence for the involvement of a cytoplasmic factor in the aging of the yeast Saccharomyces cerevisiae. J Bacteriol 1989: 171: 37-42.
  102. Winfree AT. The prehistory ofthe Belousov-Zhabotinsky oscillator. J Chem Educ 1984: 61: 661-3.
  103. Drubin DG, Nelson WJ. Origins ofcell polarity Cell 1996: 84: 335-44.
  104. Pillus L, Rine J. Epigenetic inheritance of transcriptional states m S. cerevisiae. Cell 1989: 59: 637-47.
  105. Kim S, Villeponteau B, Jazwinski SM. Effect of replicative age on transcriptional silencing near telomeres in Saccharomyces cerevisiae. Biochem Biophys Res Commun 1996: 219: 370-6.
  106. Mata J, Nurse P. teal and the microtubular cytoskeleton are important for generating global spatial order within the fission yeast cell. Cell 1997: 89: 939-49.
  107. Varkey JP, Muhlrad PJ, Minniti AN, Do B, Ward S. The Caenorhabditis elegans spe-26 gene is necessary to form spermatids and encodes a protein similar to the actin-associated proteins kelch and scruin. Genes Dev 1995: 9: 1074-86.
  108. Van Voorhies WA. Production ofsperm reduces nematode lifespan. Nature 1992: 360: 456-8.
  109. Carey JR. What demographers can learn from fruit fly actuarial models and biology. Demography 1997: 34: 17-30.
  110. Jazwinski SM. The genetics ofaging in the yeast Saccharomyces cerevisiae. Genetica 1993: 91: 35-51.
  111. Smeal T, Claus J, Kennedy B, Cole F, Guarente L. Loss of transcriptional silencing causes sterility in old mother cells of S. cerevisiae. Cell 1996: 84: 633-42.
  112. Sinclair DA, Guarente L. Extrachromosomal rDNA circles - a cause of aging in yeast. Cell 1997: 91: 1033-^2.
  113. Hayflick L. The cell biology of human aging. N Engl J Med 1976: 295: 1302-8.
  114. Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Celt Res 1961: 25: 585-621.
  115. Daniel CW; DeOme KB, Young IT, Blair PB, Faulkin LI Ir. The in vivo lifespan of normal and preneoplastic mouse mammary glands: a serial transplantation study. Proc Natl Acad Sci USA 1968: 61: 53-60.
  116. Barrett IC. Cell senescence and apoptosis. In: Levine AJ, Schmidek HH, eds. MoleCular genetics of nervous system tumors. New York: Wiley-Liss, 1993: 61-72.
  117. Barrett IC, Fletcher WE Cellular and molecular mechanisms of multistep carcinogenesis in cell culture models. In Barrett IC, ed. Mechanisms of environmental carcinogenesis: multistep models of carcinogenesis, Volume ". Boca Raton, CRC Press, 1987: 73-116.
  118. Sager R. Genetic suppression of tumor formation: a new frontier in cancer research. Cancer Res 1986: 46: 1573-80.
  119. Maciera-Coelho, A. Biology of normal proliferating cells in vitro. Relevance for in vivo aging. In: von Hang Hp, ed. Interdisciplinary topics in gerontology. Basel: Karger, 1988: 23: 1-212.
  120. Pereira-Smith OM, Smith IR. Genetic analysis of indefinite division in human cells: Identification of four complementation groups. Proc Natl Acad Sci USA 1988: 85: 6042-6.
  121. Sugawara OM, Oshimura M, Koi M, Annab L, Barrett IC. Induction of cellular senescence in immortalized cells by human chromosome I. Science 1990: 247: 707-10.
  122. Koi M, Barrett IC. Loss of tumor-suppressive function during chemically induced neoplastic progression of Syrian hamster embryo cells. Proc Natl Acad Sci USA 1986: 83: 5992-6
  123. Vojta PI, Barrett IC. Genetic analysis of cellular senescence. Biochim Biophys Acta 1995: 1242: 29 - 41.
  124. Klein CB, Conway K, Wang XV.; et al. Senescence of nickel-transformed cells by a mammalian X chromosome: possible epigenetic control. Science 1991: 51: 796-9.
  125. Ning Y, Weber IL, Killary AM, Ledbetter DH, Smith IR, Pereira-Smith OM. Genetic analysis of indefinite division in human cells: Evidence for a senescence-related gene(s) on human chromosome 4. Proc Natl Acad Sci USA 1991: 88: 5635-9.
  126. Oshimura M, Barrett IC. Multiple pathways to cellular senescence: Role of telomerase repressors. Bur J Cancer 1997: 33: 710-5
  127. England NL, Cuthbert Ap, Trott DA, et al. Identification of human tumour suppressor genes by monochromosome transfer: rapid growth-arrest response mapped to 9p21 is mediated solely by the cyclin-D-dependent kinase inhibitor gene, CDKN2A (p16INK4A). Carcinogenesis 1996: 17: 1567 - 75.
  128. Alcorta D, Xiong Y, Phelps D, Hannon G, Beach D, Barrett IC. Involvement of the cyclin-dependent kinase inhibitor pl6 (INK4a) in replicative senescence of normal human fibroblasts. Proc Natl Acad Sci USA 1996: 13742-7.
  129. Uhrbom L, Nister M, Westermark B. Induction of senescence in human malignant glioma cells by pI6INK4A. Oncogene 1997: 15: 505-14.
  130. Vogt M, Haggblom C, Yeargin I, Christiansen-Weber T, Haas M. Independent induction of senescence by pl61NK4a and p21CIPI in spontaneously immortalized human fibroblasts. Cell Growth Differ 1998: 9: 139-46.
  131. McConnell BB, Starborg M, Brookes S, Peters G. Inhibitors of cyclin-dependent kinases induce features of replicative seenescence in early passage human diploid fibroblasts. Curr Bio1 1998: 12: 351-4.
  132. Hara E, Tsurui H, Shinozaki A, Nakada S, Oda K. Cooperative effect of antisense-Rb and antisense-p53 oligomers on the extension of lifespan in human diploid fibroblasts, TIG-I. Biochem Biophys Res Commun 1991: 179: 528-34.
  133. Hinds PV.; Mittnacht S, Dulic I; Arnold A, Reed SI, Weinberg RA. Regulation of retinoblastoma protein functions by ectopic expression of human cyclins. Cell 1992: 70: 993-1006.
  134. Levine AI, Momand I, Finlay CA. The p53 tumor suppressor gene. Nature 1991: 351: 453-6. 23.
  135. Konig.p' Rhodes D. Recognition oftelomeric DNA. Trends Biochem Sci 1997: 22: 43-7.
  136. Chiu C-P, Harley CB. Replicative senescence and cell immortality: the role oftelomeres and telomerase. Proc Soc Bxp BioI Med 1997: 214: 99-106.
  137. Autexier C, Greider CW Telomerase and cancer: Revisiting the telomere hypothesis. Trends Biochem Sci 1996: 21: 387-91.
  138. Makarov HL, Hirose Y, Langmore IP. Long tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening. Ce11 1997: 88: 657-46.
  139. Kim Nv.; Piatyszek MA, Prowse KR, et al. Specific association of human telomerase activity with immortal cells and cancer. Science 1994: 266: 2011-5.
  140. Feng I, Funk WD, Want S-S, et al. The RNA component of human telomerase. Science 1995: 269: 1236-41.
  141. Harrington L, McPhail T, Mar \I; et al. A mammalian telomerase-associated protein. Science 1997: 275: 973-7.
  142. Nakayama II, Saito M, Nakamura H, Matsuura A, Ishikawa E TLPI: A gene encoding a protein component of mammalian telomerase is a novel member of WD repeats family. Ce11 1997: 88: 875 - 84.
  143. Meyerson M, Counter CM, Eaton EN, et al. hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell 1997: 90: 785-95.
  144. Nakamura TM, Morin GB, Chapman KB, et al. Telomerase catalytic subunit homologs from fission yeast and human. Science 1997: 277: 955-9.
  145. Kilian A, Bowtell DD, Abud HE, et al. Isolation of a candidate human telomerase catalytic subunit gene, which reveals complex splicing patterns in different cell types. Hum Mol Genet 1997: 6: 2011 - 9.
  146. Harrington L, Zhou W; McPhail T, et al. Human telomerase contains evolutionarily conserved catalytic and structural subunits. Genes Dev 1997: 11: 3109-15.
  147. Weinrich SL, Pruzan R, Ma L, et al. Reconstitution of human telomerase with the template RNA component hTR and the catalytic protein subunit hTRT. Nat Genet 1997: 17: 498-502.
  148. Nakayama I-I, Tahara H, Tahara E, et al. Telomerase activation by hTRT in human normal fibroblasts and hepatocellular carcinomas. Nat Genet 1998: 18: 65-8.
  149. Ohmura H, Tahara H, Suzuki M, etal. Restoration of the cellular senescence program and repression of telomerase by human chromosome 3. Jpn J Cancer Res 1995: 86: 899-904.
  150. Horikawa I, Oshimura M, Barrett IC. Repression of the telomerase catalytic subunit by a gene on human chromosome 3 that induces cellular senescence. Mol Carcinog 1998: 22: 65-72.
  151. Sasaki M, Ronda T, Yamada H, Wake N, Barrett IC, Oshimura M. Evidence for multiple pathways to cellular senescence. Cancer Res 1994: 54: 6090-3.
  152. Wright WE, Shay JW The two-stage mechanism controlling cellular senescence and immortalization. Exp Gerontol 1992: 27: 383-9.
  153. Hubbard-Smith K, Patsalis P, Pardinas IR, Iha KK, Henderson AS, Ozer HL. Altered chrompsome 6 in immortal human fibroblasts. Mol Cell Bio1 1992: 12: 2273-81.
  154. Sandhu AK, Hubbard K, Kaur Gp, Iha KK, Ozer HL, Athwal RS. Senescence of immortal human fibroblasts by the introduction of normal human chromosome 6. Proc Natl Acad Sci USA 1994: 91: 5498-502.
  155. Duncan EL, Whitaker NI, Moy EL, Reddei RR. Assignment of SV40-immortalized cells to more than one complementation group for immortalization. Exp Cell Res 1993: 205: 337-44.
  156. Berry II, Burns IE, Parkinson Ek. Assignment of two human epidermal squamous cell carcinomas cell lines to more than one complementation group for the immortal phenotype. Mol Carcinog 1994: 9: 134-42.
  157. Paraskeva C, Finarty S, Powell S. Immortalization of a human colorectal adenoma cell line by continuous in vitro passage: possible involvement of chromosome I in tumour progression. Int J Cancer 1988.41.908-12.
  158. Paraskeva C, Finarty S, Mountford RA, Powell SC. Specific cytogenetic abnormalities in two new human colorectal adenoma-derived epithelial cell lines. Cancer Res 1989: 49: 1282-6.
  159. Paraskeva C, Harvey A, Finarty S, Powell S. Possible involvement of chromosome I in in vitro immortalization: evidence from progression of a human adenoma-derived cell line in vitro. lnl J Cancer 1989: 43: 743-6.
  160. Dimri GP, Lee X, Baile G, et al. A biomarker that identified senescent human cells in culture and in aging skin in vivo. Proc NaIl Acad Sci USA 1995: 9363-7.
  161. Futreal PA, Barrett JC. Failure of senescent cells to phosphorylate the RB protein. Oncogene 1991: 6: 1109-13.
  162. Zijlmans JM, Martens UM, Poon, SS, et al. Telomeres in the mouse have large inter-chromosomal variations in the number ofT2AG3 repeats. Proc NaIl Acad Sci USA 1997: 94: 7423-8.
  163. Von Zglinicki T, Saretzki G, Docke W; Lotze C. Mild hyperoxia shortens telomeres and inhibits proliferation of fibroblasts: A model for senescence? Exp Cell Res 1995: 220: 186-93.
  164. Di Leonardo, A., Linke, S.P., Clarkin, K., and Wahl, G.M. DNA damage triggers a prolonged p53 - dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. Genes Dev 1994: 8: 2540-51.
  165. Chen Q, Ames BN. Senescence-like growth arrest induced by hydrogen peroxide in human diploid fibroblast F65 cells. Proc NaIl Acad Sci USA 1994: 91: 4130-4.
  166. Chen Q, Fischer A, Reagan JD, Yan JL, Ames BN. Oxidative DNA damage and senescence of human diploid fibroblast cells. Proc NaIl Acad Sci USA 1995: 92: 4337-41.
  167. Wilson VL, Jones PA. DNA methylation decreases in aging but not in immortal cells. Science 1983: 220: 1055-7.
  168. Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu Cp, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE. Extension of life-span by introduction of telomerase into normal human cells [see comments]. Science 1998: 279: 349-352.
  169. Serrano M, Lin AW; McCurrach ME, Beach, D. Lowe SW: Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Ce11 1997: 88: 593-602.
  170. Tresini M, Mawal-Dewan M, Cristofalo VJ, Sell C. A phosphatidylinositol 3-kinase inhibitor induces a senescent-Iike growth arrest in human diploid fibroblasts. Cancer Res 1998: 58: 1-4.
  171. Di Leonardo A, Linke SP, Clarkin K, Wahl GM. DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cipl in normal human fibroblasts. Genes Dev 1994: 8: 2540 - 51
  172. Ogryzko 'v: Hirai TH, Russanova VR, Barbie DA, Howard BH. Human fibroblast commitment to a senescence-Iike state in response to histone deacetylase inhibitors is cell cycle dependent. Mol Cell Bio1 1996: 16: 5210-8.
  173. Robles SJ, Adami GR. Agents that cause DNA double strand breaks lead to p16lNK4a enrichment and the premature senescence of normal fibroblasts. Oncogene 1998: 16: 1113-23.
  174. DeVita VT Jr, Young RC, and Ganellos GP. Combination versus single agent chemotherapy: a review nf the basis for selection of drug treatment of cancer. Cancer 1975: 35: 98-110.
< Previous | Contents | Next >